通过基于 GAN 的图像编辑预测多发性硬化症的疾病相关 MRI 模式

IF 2.4 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Zeitschrift fur Medizinische Physik Pub Date : 2024-05-01 DOI:10.1016/j.zemedi.2023.12.001
Daniel Güllmar , Wei-Chan Hsu , Jürgen R. Reichenbach
{"title":"通过基于 GAN 的图像编辑预测多发性硬化症的疾病相关 MRI 模式","authors":"Daniel Güllmar ,&nbsp;Wei-Chan Hsu ,&nbsp;Jürgen R. Reichenbach","doi":"10.1016/j.zemedi.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).</p></div><div><h3>Methods</h3><p>We trained the StyleGAN model unsupervised using T<sub>1</sub>-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).</p></div><div><h3>Results</h3><p>Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T<sub>1</sub>-weighted and ADC maps and increasing lesion extent on ADC maps.</p></div><div><h3>Conclusion</h3><p>Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.</p></div>","PeriodicalId":54397,"journal":{"name":"Zeitschrift fur Medizinische Physik","volume":"34 2","pages":"Pages 318-329"},"PeriodicalIF":2.4000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388923001484/pdfft?md5=41054e941858901ec78e1d44ca3d8f6d&pid=1-s2.0-S0939388923001484-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing\",\"authors\":\"Daniel Güllmar ,&nbsp;Wei-Chan Hsu ,&nbsp;Jürgen R. Reichenbach\",\"doi\":\"10.1016/j.zemedi.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Introduction</h3><p>Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).</p></div><div><h3>Methods</h3><p>We trained the StyleGAN model unsupervised using T<sub>1</sub>-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).</p></div><div><h3>Results</h3><p>Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T<sub>1</sub>-weighted and ADC maps and increasing lesion extent on ADC maps.</p></div><div><h3>Conclusion</h3><p>Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.</p></div>\",\"PeriodicalId\":54397,\"journal\":{\"name\":\"Zeitschrift fur Medizinische Physik\",\"volume\":\"34 2\",\"pages\":\"Pages 318-329\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0939388923001484/pdfft?md5=41054e941858901ec78e1d44ca3d8f6d&pid=1-s2.0-S0939388923001484-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zeitschrift fur Medizinische Physik\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0939388923001484\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Medizinische Physik","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388923001484","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

导言多发性硬化症(MS)是一种影响大脑和脊髓的复杂神经退行性疾病。在这项研究中,我们利用 StyleGAN 模型,采用基于深度学习的方法来探索多发性硬化症的相关模式,并预测磁共振图像(MRI)中的疾病进展。然后,我们使用训练有素的模型对真实输入数据中的 MR 图像进行重采样,并通过在潜空间中的操作对其进行修改,以模拟多发性硬化症的进展。结果我们的研究结果表明,多发性硬化症的进展可以通过在潜空间操作磁共振图像来模拟,表现为 T1 加权图和 ADC 图上的脑容量损失,以及 ADC 图上病变范围的扩大。结论总之,本研究证明了 StyleGAN 模型在医学成像中研究图像标记的潜力,并通过在潜空间中的相应操作,进一步阐明了脑萎缩与多发性硬化症进展之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting disease-related MRI patterns of multiple sclerosis through GAN-based image editing

Introduction

Multiple sclerosis (MS) is a complex neurodegenerative disorder that affects the brain and spinal cord. In this study, we applied a deep learning-based approach using the StyleGAN model to explore patterns related to MS and predict disease progression in magnetic resonance images (MRI).

Methods

We trained the StyleGAN model unsupervised using T1-weighted GRE MR images and diffusion-based ADC maps of MS patients and healthy controls. We then used the trained model to resample MR images from real input data and modified them by manipulations in the latent space to simulate MS progression. We analyzed the resulting simulation-related patterns mimicking disease progression by comparing the intensity profiles of the original and manipulated images and determined the brain parenchymal fraction (BPF).

Results

Our results show that MS progression can be simulated by manipulating MR images in the latent space, as evidenced by brain volume loss on both T1-weighted and ADC maps and increasing lesion extent on ADC maps.

Conclusion

Overall, this study demonstrates the potential of the StyleGAN model in medical imaging to study image markers and to shed more light on the relationship between brain atrophy and MS progression through corresponding manipulations in the latent space.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.70
自引率
10.00%
发文量
69
审稿时长
65 days
期刊介绍: Zeitschrift fur Medizinische Physik (Journal of Medical Physics) is an official organ of the German and Austrian Society of Medical Physic and the Swiss Society of Radiobiology and Medical Physics.The Journal is a platform for basic research and practical applications of physical procedures in medical diagnostics and therapy. The articles are reviewed following international standards of peer reviewing. Focuses of the articles are: -Biophysical methods in radiation therapy and nuclear medicine -Dosimetry and radiation protection -Radiological diagnostics and quality assurance -Modern imaging techniques, such as computed tomography, magnetic resonance imaging, positron emission tomography -Ultrasonography diagnostics, application of laser and UV rays -Electronic processing of biosignals -Artificial intelligence and machine learning in medical physics In the Journal, the latest scientific insights find their expression in the form of original articles, reviews, technical communications, and information for the clinical practice.
期刊最新文献
Editorial Board Contents Source-detector trajectory optimization for CBCT metal artifact reduction based on PICCS reconstruction Reduction of patient specific quality assurance through plan complexity metrics for VMAT plans with an open-source TPS script Post-mastectomy radiotherapy: Impact of bolus thickness and irradiation technique on skin dose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1