激光加工高熵 VNb2TaCrMoWTi0.3B0.6 合金涂层以减少不同摩擦面的干摩擦磨损

IF 0.9 4区 材料科学 Q3 MATERIALS SCIENCE, CERAMICS Powder Metallurgy and Metal Ceramics Pub Date : 2023-12-21 DOI:10.1007/s11106-023-00397-y
O. M. Myslyvchenko, R. V. Lytvyn, K. E. Grinkevich, O. B. Zgalat-Lozynskyy, I. V. Tkachenko, O. M. Bloschanevich, S. E. Ivanchenko, V. M. Novichenko, O. P. Gaponova
{"title":"激光加工高熵 VNb2TaCrMoWTi0.3B0.6 合金涂层以减少不同摩擦面的干摩擦磨损","authors":"O. M. Myslyvchenko,&nbsp;R. V. Lytvyn,&nbsp;K. E. Grinkevich,&nbsp;O. B. Zgalat-Lozynskyy,&nbsp;I. V. Tkachenko,&nbsp;O. M. Bloschanevich,&nbsp;S. E. Ivanchenko,&nbsp;V. M. Novichenko,&nbsp;O. P. Gaponova","doi":"10.1007/s11106-023-00397-y","DOIUrl":null,"url":null,"abstract":"<p>The microstructure, phase composition, and microhardness of the cast high-entropy VNb<sub>2</sub>TaCrMoW alloy with the addition of titanium diboride were studied. The initial VNb<sub>2</sub>TaCrMoW alloy consisted of two bcc solid solutions, slightly differing in lattice parameters (<i>a</i> = 0.3139 nm and 0.3200 nm). The addition of boron as titanium diboride and repeated remelting led to a bcc solid solution with a larger lattice parameter (<i>a</i> = 0.3217 nm) and a boride with W<sub>3.5</sub>Fe<sub>2.5</sub>B<sub>4</sub> structure (<i>a</i> = 0.6054 nm and <i>c</i> = 0.3256 nm). The bcc solid solution was the first to crystallize, and the boride was part of the eutectic grains and precipitated from the last melt portions, forming a closed network. The resulting alloy was applied to a carbon steel substrate as a coating using electrospark deposition employing an Elitron-24A installation with varying electrical pulse energy. Higher pulse energy during coating deposition increased the layer thickness and surface roughness but did not influence the phase composition. The microstructure of the coatings was more uniform compared to the cast alloys, and X-ray diffraction showed that the coatings contained bcc solid solutions, Fe<sub>7</sub>W<sub>6</sub> intermetallic compound, and a small amount of TaO<sub>2</sub> oxide. The coatings had a hardness of about 10 GPa and were 11–15 μm and 16–20 μm thick at discharge energies of 0.52 and 1.1 J, respectively. A comparative analysis of the phase composition, hardness, and microstructure of the cast alloy and associated coatings was carried out. The coatings deposited at a discharge energy of 0.52 J were subjected to laser processing. Laser processing of the coatings resulted in a thermally affected zone, while the surface layer hardness hardly changed. The wear resistance of the coatings deposited at a discharge energy of 0.52 J was analyzed. Wear resistance testing was conducted for three counterface materials (VK6, Al<sub>2</sub>O<sub>3</sub>, and Si<sub>3</sub>N<sub>4</sub>) in quasistatic and dynamic loading modes. Laser processing of the electrospark coatings changed the wear mechanism and significantly increased the wear resistance regardless of the counterface material and loading mode.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 5-6","pages":"339 - 349"},"PeriodicalIF":0.9000,"publicationDate":"2023-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser Processing of High-Entropy VNb2TaCrMoWTi0.3B0.6 Alloy Coatings for Wear Reduction in Dry Friction with Different Counterfaces\",\"authors\":\"O. M. Myslyvchenko,&nbsp;R. V. Lytvyn,&nbsp;K. E. Grinkevich,&nbsp;O. B. Zgalat-Lozynskyy,&nbsp;I. V. Tkachenko,&nbsp;O. M. Bloschanevich,&nbsp;S. E. Ivanchenko,&nbsp;V. M. Novichenko,&nbsp;O. P. Gaponova\",\"doi\":\"10.1007/s11106-023-00397-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The microstructure, phase composition, and microhardness of the cast high-entropy VNb<sub>2</sub>TaCrMoW alloy with the addition of titanium diboride were studied. The initial VNb<sub>2</sub>TaCrMoW alloy consisted of two bcc solid solutions, slightly differing in lattice parameters (<i>a</i> = 0.3139 nm and 0.3200 nm). The addition of boron as titanium diboride and repeated remelting led to a bcc solid solution with a larger lattice parameter (<i>a</i> = 0.3217 nm) and a boride with W<sub>3.5</sub>Fe<sub>2.5</sub>B<sub>4</sub> structure (<i>a</i> = 0.6054 nm and <i>c</i> = 0.3256 nm). The bcc solid solution was the first to crystallize, and the boride was part of the eutectic grains and precipitated from the last melt portions, forming a closed network. The resulting alloy was applied to a carbon steel substrate as a coating using electrospark deposition employing an Elitron-24A installation with varying electrical pulse energy. Higher pulse energy during coating deposition increased the layer thickness and surface roughness but did not influence the phase composition. The microstructure of the coatings was more uniform compared to the cast alloys, and X-ray diffraction showed that the coatings contained bcc solid solutions, Fe<sub>7</sub>W<sub>6</sub> intermetallic compound, and a small amount of TaO<sub>2</sub> oxide. The coatings had a hardness of about 10 GPa and were 11–15 μm and 16–20 μm thick at discharge energies of 0.52 and 1.1 J, respectively. A comparative analysis of the phase composition, hardness, and microstructure of the cast alloy and associated coatings was carried out. The coatings deposited at a discharge energy of 0.52 J were subjected to laser processing. Laser processing of the coatings resulted in a thermally affected zone, while the surface layer hardness hardly changed. The wear resistance of the coatings deposited at a discharge energy of 0.52 J was analyzed. Wear resistance testing was conducted for three counterface materials (VK6, Al<sub>2</sub>O<sub>3</sub>, and Si<sub>3</sub>N<sub>4</sub>) in quasistatic and dynamic loading modes. Laser processing of the electrospark coatings changed the wear mechanism and significantly increased the wear resistance regardless of the counterface material and loading mode.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 5-6\",\"pages\":\"339 - 349\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-023-00397-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-023-00397-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了添加二硼化钛的铸造高熵 VNb2TaCrMoW 合金的显微结构、相组成和显微硬度。初始 VNb2TaCrMoW 合金由两种 bcc 固溶体组成,晶格参数略有不同(a = 0.3139 nm 和 0.3200 nm)。添加硼作为二硼化钛(titanium diboride)并反复重熔后,形成了晶格参数较大的 bcc 固溶体(a = 0.3217 nm)和 W3.5Fe2.5B4 结构的硼化物(a = 0.6054 nm 和 c = 0.3256 nm)。bcc 固溶体首先结晶,硼化物是共晶晶粒的一部分,从最后的熔体部分析出,形成一个封闭的网络。利用电火花沉积技术,使用不同电脉冲能量的 Elitron-24A 设备,在碳钢基体上涂敷所产生的合金涂层。在涂层沉积过程中,脉冲能量越高,涂层厚度和表面粗糙度越大,但并不影响相组成。与铸造合金相比,涂层的微观结构更加均匀,X 射线衍射显示涂层中含有 bcc 固溶体、Fe7W6 金属间化合物和少量 TaO2 氧化物。涂层的硬度约为 10 GPa,在放电能量为 0.52 和 1.1 J 时,厚度分别为 11-15 μm 和 16-20 μm。对铸造合金和相关涂层的相组成、硬度和微观结构进行了比较分析。对放电能量为 0.52 J 时沉积的涂层进行了激光加工。涂层的激光加工产生了热影响区,而表层硬度几乎没有变化。对放电能量为 0.52 J 时沉积的涂层的耐磨性进行了分析。在准静态和动态加载模式下,对三种反面材料(VK6、Al2O3 和 Si3N4)进行了耐磨性测试。激光加工电火花涂层改变了磨损机理,并显著提高了耐磨性,而与对表面材料和加载模式无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser Processing of High-Entropy VNb2TaCrMoWTi0.3B0.6 Alloy Coatings for Wear Reduction in Dry Friction with Different Counterfaces

The microstructure, phase composition, and microhardness of the cast high-entropy VNb2TaCrMoW alloy with the addition of titanium diboride were studied. The initial VNb2TaCrMoW alloy consisted of two bcc solid solutions, slightly differing in lattice parameters (a = 0.3139 nm and 0.3200 nm). The addition of boron as titanium diboride and repeated remelting led to a bcc solid solution with a larger lattice parameter (a = 0.3217 nm) and a boride with W3.5Fe2.5B4 structure (a = 0.6054 nm and c = 0.3256 nm). The bcc solid solution was the first to crystallize, and the boride was part of the eutectic grains and precipitated from the last melt portions, forming a closed network. The resulting alloy was applied to a carbon steel substrate as a coating using electrospark deposition employing an Elitron-24A installation with varying electrical pulse energy. Higher pulse energy during coating deposition increased the layer thickness and surface roughness but did not influence the phase composition. The microstructure of the coatings was more uniform compared to the cast alloys, and X-ray diffraction showed that the coatings contained bcc solid solutions, Fe7W6 intermetallic compound, and a small amount of TaO2 oxide. The coatings had a hardness of about 10 GPa and were 11–15 μm and 16–20 μm thick at discharge energies of 0.52 and 1.1 J, respectively. A comparative analysis of the phase composition, hardness, and microstructure of the cast alloy and associated coatings was carried out. The coatings deposited at a discharge energy of 0.52 J were subjected to laser processing. Laser processing of the coatings resulted in a thermally affected zone, while the surface layer hardness hardly changed. The wear resistance of the coatings deposited at a discharge energy of 0.52 J was analyzed. Wear resistance testing was conducted for three counterface materials (VK6, Al2O3, and Si3N4) in quasistatic and dynamic loading modes. Laser processing of the electrospark coatings changed the wear mechanism and significantly increased the wear resistance regardless of the counterface material and loading mode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Powder Metallurgy and Metal Ceramics
Powder Metallurgy and Metal Ceramics 工程技术-材料科学:硅酸盐
CiteScore
1.90
自引率
20.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.
期刊最新文献
Properties of Powders Produced by Plasma-Arc Spheroidization of Current-Carrying Fe–Al Flux-Cored Wire Tribotechnical Properties of Copper-Based Antifriction Composites for High-Speed Friction Units of Printing Machines Influence of f–d Interaction on Tunnel Magnetoresistance and Magnetoimpedance in Island Fe/Gd2O3 Nanostructures Experimental Studies on the Effect of Destructive Reagents on Metal Structural Elements Structural Creep Sensitivity of ARB-Processed Al/SiC/Cu Bimetallic Composite Strip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1