通过 3D CFD 模型研究烟囱入口倾角对太阳能烟囱发电厂发电量的影响

IF 2.1 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Photoenergy Pub Date : 2023-12-23 DOI:10.1155/2023/7394007
Mahmut Kaplan
{"title":"通过 3D CFD 模型研究烟囱入口倾角对太阳能烟囱发电厂发电量的影响","authors":"Mahmut Kaplan","doi":"10.1155/2023/7394007","DOIUrl":null,"url":null,"abstract":"The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> at chimney inlet on performance characteristics of the system by employing RNG <svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 25.4837 9.63826\" width=\"25.4837pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.445,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.981,0)\"></path></g></svg> turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"></path></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"></path></g></svg></span><sup>°</sup>–80<sup>°</sup>) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span><sup>°</sup> compared to that of 14.3 m/s obtained for the base model having <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"><use xlink:href=\"#g113-54\"></use></g></svg></span><sup>°</sup> at 1000 W/m<sup>2</sup>. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m<sup>2</sup>.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":"33 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model\",\"authors\":\"Mahmut Kaplan\",\"doi\":\"10.1155/2023/7394007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle (<span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.59789 9.49473\\\" width=\\\"6.59789pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>)</span> at chimney inlet on performance characteristics of the system by employing RNG <svg height=\\\"9.63826pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 25.4837 9.63826\\\" width=\\\"25.4837pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.445,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,19.981,0)\\\"></path></g></svg> turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (<span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"></path></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"></path></g></svg></span><sup>°</sup>–80<sup>°</sup>) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg></span><sup>°</sup> compared to that of 14.3 m/s obtained for the base model having <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg></span><sup>°</sup> at 1000 W/m<sup>2</sup>. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m<sup>2</sup>.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7394007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7394007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

太阳是一种丰富而清洁的可再生能源。因此,太阳能为未来减缓气候变化和减少化石燃料燃烧产生的排放提供了巨大潜力。太阳能烟囱发电厂(SCPP)具有满足大规模可持续电力生产的技术能力。SCPP 系统的基本组成部分是烟囱、涡轮机和集热器。这些部件的几何尺寸是提高太阳能烟囱效率的关键因素。这项工作的目的是通过 ANSYS Fluent CFD 软件,采用 RNG 湍流模型和离散纵坐标(DO)太阳光线跟踪方法,分析烟囱入口处的倾角()对系统性能特征的影响。模型的建立考虑了曼萨纳雷斯电厂的几何参数,并与测量结果进行了验证。在烟囱、集热器和圆角的几何尺寸保持不变的情况下,通过改变烟囱入口坡度(°-80°),产生了创新的烟囱入口配置。计算结果显示,新的烟囱配置提高了最大速度、系统功率输出和涡轮压降。在 1000 W/m2 条件下,带有 ° 的配置的峰值速度为 18.1 m/s,而带有 ° 的基本模型的峰值速度为 14.3 m/s。此外,在 1000 W/m2 条件下,与输出功率为 49.1 kW 的基本模型相比,该配置将输出功率提高到 61.5 kW,增幅为 24.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model
The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle () at chimney inlet on performance characteristics of the system by employing RNG turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (°–80°) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with ° compared to that of 14.3 m/s obtained for the base model having ° at 1000 W/m2. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.00
自引率
3.10%
发文量
128
审稿时长
3.6 months
期刊介绍: International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge. The journal covers the following topics and applications: - Photocatalysis - Photostability and Toxicity of Drugs and UV-Photoprotection - Solar Energy - Artificial Light Harvesting Systems - Photomedicine - Photo Nanosystems - Nano Tools for Solar Energy and Photochemistry - Solar Chemistry - Photochromism - Organic Light-Emitting Diodes - PV Systems - Nano Structured Solar Cells
期刊最新文献
In vitro evaluation of the selective cytotoxicity and genotoxicity of three synthetic ortho-nitrobenzyl derivatives in human cancer cell lines, with and without metabolic activation. IGWO-VINC Algorithm Applied to MPPT Strategy for PV System Enhancing CsSn0.5Ge0.5I3 Perovskite Solar Cell Performance via Cu2O Hole Transport Layer Integration Investigation of the Performance of a Sb2S3-Based Solar Cell with a Hybrid Electron Transport Layer (h-ETL): A Simulation Approach Using SCAPS-1D Software Maximizing Conversion Efficiency: A Numerical Analysis on P+ a-SiC/i Interface/n-Si Heterojunction Solar Cells with AMPS-1D
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1