{"title":"通过 3D CFD 模型研究烟囱入口倾角对太阳能烟囱发电厂发电量的影响","authors":"Mahmut Kaplan","doi":"10.1155/2023/7394007","DOIUrl":null,"url":null,"abstract":"The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.59789 9.49473\" width=\"6.59789pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>)</span> at chimney inlet on performance characteristics of the system by employing RNG <svg height=\"9.63826pt\" style=\"vertical-align:-0.3499298pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 25.4837 9.63826\" width=\"25.4837pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.445,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,19.981,0)\"></path></g></svg> turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (<span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"></path></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"></path></g></svg></span><sup>°</sup>–80<sup>°</sup>) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"><use xlink:href=\"#g113-49\"></use></g></svg></span><sup>°</sup> compared to that of 14.3 m/s obtained for the base model having <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.738 9.49473\" width=\"17.738pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-230\"></use></g><g transform=\"matrix(.013,0,0,-0.013,10.107,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"21.320183800000002 -9.28833 12.678 9.49473\" width=\"12.678pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.37,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,27.61,0)\"><use xlink:href=\"#g113-54\"></use></g></svg></span><sup>°</sup> at 1000 W/m<sup>2</sup>. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m<sup>2</sup>.","PeriodicalId":14195,"journal":{"name":"International Journal of Photoenergy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model\",\"authors\":\"Mahmut Kaplan\",\"doi\":\"10.1155/2023/7394007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle (<span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.59789 9.49473\\\" width=\\\"6.59789pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>)</span> at chimney inlet on performance characteristics of the system by employing RNG <svg height=\\\"9.63826pt\\\" style=\\\"vertical-align:-0.3499298pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 25.4837 9.63826\\\" width=\\\"25.4837pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.445,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,19.981,0)\\\"></path></g></svg> turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (<span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"></path></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"></path></g></svg></span><sup>°</sup>–80<sup>°</sup>) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"><use xlink:href=\\\"#g113-49\\\"></use></g></svg></span><sup>°</sup> compared to that of 14.3 m/s obtained for the base model having <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.738 9.49473\\\" width=\\\"17.738pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-230\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,10.107,0)\\\"><use xlink:href=\\\"#g117-34\\\"></use></g></svg><span></span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.320183800000002 -9.28833 12.678 9.49473\\\" width=\\\"12.678pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.37,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,27.61,0)\\\"><use xlink:href=\\\"#g113-54\\\"></use></g></svg></span><sup>°</sup> at 1000 W/m<sup>2</sup>. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m<sup>2</sup>.\",\"PeriodicalId\":14195,\"journal\":{\"name\":\"International Journal of Photoenergy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Photoenergy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/7394007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Photoenergy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2023/7394007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Influence of Inclination Angle at the Chimney Inlet on the Power Generation in Solar Chimney Power Plants through 3D CFD Model
The sun is an abundantly available and clean renewable energy source. Therefore, solar energy offers significant potential for mitigating climate change and reducing emissions from burning fossil fuels in the future. Solar chimney power plants (SCPPs) have a technical capability for meeting the massive sustainable power production. Basic parts of SCPP system are the chimney, turbine, and collector. The geometric dimensions of the components are the crucial factors for improving the solar chimney efficiency. The goal of this work is to analyse the influences of the inclination angle () at chimney inlet on performance characteristics of the system by employing RNG turbulence model coupled with discrete ordinate (DO) solar ray tracing method via ANSYS Fluent CFD software. The model is built by taking into consideration geometric parameters of Manzanares plant and verified with its measurements. The innovative chimney entrance configurations are produced by altering the chimney entrance slope (°–80°) with the geometrical dimensions of the chimney, collector, and fillet keeping constant. The computational results display that the new chimney configurations improve the maximum velocity, system power output, and turbine pressure drop. The peak velocity of 18.1 m/s is gained for the configuration with ° compared to that of 14.3 m/s obtained for the base model having ° at 1000 W/m2. Besides, this configuration enhances power output to 61.5 kW with a rise of 24.5% compared to the base model with a power output of 49.1 kW at 1000 W/m2.
期刊介绍:
International Journal of Photoenergy is a peer-reviewed, open access journal that publishes original research articles as well as review articles in all areas of photoenergy. The journal consolidates research activities in photochemistry and solar energy utilization into a single and unique forum for discussing and sharing knowledge.
The journal covers the following topics and applications:
- Photocatalysis
- Photostability and Toxicity of Drugs and UV-Photoprotection
- Solar Energy
- Artificial Light Harvesting Systems
- Photomedicine
- Photo Nanosystems
- Nano Tools for Solar Energy and Photochemistry
- Solar Chemistry
- Photochromism
- Organic Light-Emitting Diodes
- PV Systems
- Nano Structured Solar Cells