通过有序地理加权平均(OGWA)操作器利用综合指标的空间异质性

IF 3.3 3区 地球科学 Q1 GEOGRAPHY Geographical Analysis Pub Date : 2023-12-22 DOI:10.1111/gean.12384
Elisa Fusco, Matheus Pereira Libório, Hamidreza Rabiei-Dastjerdi, Francesco Vidoli, Chris Brunsdon, Petr Iakovlevitch Ekel
{"title":"通过有序地理加权平均(OGWA)操作器利用综合指标的空间异质性","authors":"Elisa Fusco,&nbsp;Matheus Pereira Libório,&nbsp;Hamidreza Rabiei-Dastjerdi,&nbsp;Francesco Vidoli,&nbsp;Chris Brunsdon,&nbsp;Petr Iakovlevitch Ekel","doi":"10.1111/gean.12384","DOIUrl":null,"url":null,"abstract":"<p>Spatially heterogeneous weights and a non-compensatory aggregation scheme, are two important properties needed to construct a composite indicator capable of summarizing properly the multidimensional phenomenon of local spatial units. Such a composite indicator takes into account, on the one hand, the latent characteristics of the specific units related to their location in the territory, and on the other hand, the relative importance of sub-indicators highlighting both positive and negative aspects of the studied phenomena. Under these premises, this article proposes a new method called <i>Ordered Geographically Weighted Averaging</i> (OGWA), which can consider different degrees of non-compensability between sub-indicators and, at the same time, the spatial heterogeneity for continuous, ordinal, and mixed data. The properties of the method are evaluated through a simulation study. Finally, the method is applied to construct a composite indicator to map the urban public infrastructure of São Sebastião do Paraíso, a city located in the southeastern region of Brazil.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"56 3","pages":"530-553"},"PeriodicalIF":3.3000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12384","citationCount":"0","resultStr":"{\"title\":\"Harnessing Spatial Heterogeneity in Composite Indicators through the Ordered Geographically Weighted Averaging (OGWA) Operator\",\"authors\":\"Elisa Fusco,&nbsp;Matheus Pereira Libório,&nbsp;Hamidreza Rabiei-Dastjerdi,&nbsp;Francesco Vidoli,&nbsp;Chris Brunsdon,&nbsp;Petr Iakovlevitch Ekel\",\"doi\":\"10.1111/gean.12384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatially heterogeneous weights and a non-compensatory aggregation scheme, are two important properties needed to construct a composite indicator capable of summarizing properly the multidimensional phenomenon of local spatial units. Such a composite indicator takes into account, on the one hand, the latent characteristics of the specific units related to their location in the territory, and on the other hand, the relative importance of sub-indicators highlighting both positive and negative aspects of the studied phenomena. Under these premises, this article proposes a new method called <i>Ordered Geographically Weighted Averaging</i> (OGWA), which can consider different degrees of non-compensability between sub-indicators and, at the same time, the spatial heterogeneity for continuous, ordinal, and mixed data. The properties of the method are evaluated through a simulation study. Finally, the method is applied to construct a composite indicator to map the urban public infrastructure of São Sebastião do Paraíso, a city located in the southeastern region of Brazil.</p>\",\"PeriodicalId\":12533,\"journal\":{\"name\":\"Geographical Analysis\",\"volume\":\"56 3\",\"pages\":\"530-553\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gean.12384\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geographical Analysis\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gean.12384\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12384","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

空间异质性权重和非补偿性汇总方案,是构建能够正确概括地方空间单位多维现象的综合指标所需的两个重要属性。这种综合指标一方面要考虑到特定单位与其在地域中的位置有关的潜在特征,另一方面要考虑到突出所研究现象的积极和消极方面的子指标的相对重要性。在这些前提下,本文提出了一种名为有序地理加权平均法(OGWA)的新方法,该方法可以考虑子指标之间不同程度的不可补偿性,同时还可以考虑连续数据、序数数据和混合数据的空间异质性。通过模拟研究对该方法的特性进行了评估。最后,应用该方法构建了一个综合指标,用于绘制巴西东南部城市圣塞巴斯蒂安-杜帕拉伊索(São Sebastião do Paraíso)的城市公共基础设施地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Harnessing Spatial Heterogeneity in Composite Indicators through the Ordered Geographically Weighted Averaging (OGWA) Operator

Spatially heterogeneous weights and a non-compensatory aggregation scheme, are two important properties needed to construct a composite indicator capable of summarizing properly the multidimensional phenomenon of local spatial units. Such a composite indicator takes into account, on the one hand, the latent characteristics of the specific units related to their location in the territory, and on the other hand, the relative importance of sub-indicators highlighting both positive and negative aspects of the studied phenomena. Under these premises, this article proposes a new method called Ordered Geographically Weighted Averaging (OGWA), which can consider different degrees of non-compensability between sub-indicators and, at the same time, the spatial heterogeneity for continuous, ordinal, and mixed data. The properties of the method are evaluated through a simulation study. Finally, the method is applied to construct a composite indicator to map the urban public infrastructure of São Sebastião do Paraíso, a city located in the southeastern region of Brazil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
5.60%
发文量
40
期刊介绍: First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.
期刊最新文献
Issue Information Impacts of improved transport on regional market access Testing Hypotheses When You Have More Than a Few* Beyond Auto‐Models: Self‐Correlated Sui‐Model Respecifications Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1