基于神经的非精确图形去匿名化

IF 3.2 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS High-Confidence Computing Pub Date : 2023-11-22 DOI:10.1016/j.hcc.2023.100186
Guangxi Lu , Kaiyang Li , Xiaotong Wang , Ziyue Liu , Zhipeng Cai , Wei Li
{"title":"基于神经的非精确图形去匿名化","authors":"Guangxi Lu ,&nbsp;Kaiyang Li ,&nbsp;Xiaotong Wang ,&nbsp;Ziyue Liu ,&nbsp;Zhipeng Cai ,&nbsp;Wei Li","doi":"10.1016/j.hcc.2023.100186","DOIUrl":null,"url":null,"abstract":"<div><p>Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs, which is crucial in detecting malicious activities, network analysis, social network analysis, and more. Despite its paramount importance, conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph data. This paper introduces a neural-based inexact graph de-anonymization, which comprises an embedding phase, a comparison phase, and a matching procedure. The embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized graphs. The comparison phase uses a neural tensor network to ascertain node resemblances. The matching procedure employs a refined greedy algorithm to discern optimal node pairings. Additionally, we comprehensively evaluate its performance via well-conducted experiments on various real datasets. The results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.</p></div>","PeriodicalId":100605,"journal":{"name":"High-Confidence Computing","volume":"4 1","pages":"Article 100186"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667295223000843/pdfft?md5=0d8fc958c3885f06c72a47da20a82a5f&pid=1-s2.0-S2667295223000843-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural-based inexact graph de-anonymization\",\"authors\":\"Guangxi Lu ,&nbsp;Kaiyang Li ,&nbsp;Xiaotong Wang ,&nbsp;Ziyue Liu ,&nbsp;Zhipeng Cai ,&nbsp;Wei Li\",\"doi\":\"10.1016/j.hcc.2023.100186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs, which is crucial in detecting malicious activities, network analysis, social network analysis, and more. Despite its paramount importance, conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph data. This paper introduces a neural-based inexact graph de-anonymization, which comprises an embedding phase, a comparison phase, and a matching procedure. The embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized graphs. The comparison phase uses a neural tensor network to ascertain node resemblances. The matching procedure employs a refined greedy algorithm to discern optimal node pairings. Additionally, we comprehensively evaluate its performance via well-conducted experiments on various real datasets. The results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.</p></div>\",\"PeriodicalId\":100605,\"journal\":{\"name\":\"High-Confidence Computing\",\"volume\":\"4 1\",\"pages\":\"Article 100186\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000843/pdfft?md5=0d8fc958c3885f06c72a47da20a82a5f&pid=1-s2.0-S2667295223000843-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High-Confidence Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667295223000843\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High-Confidence Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667295223000843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

图去匿名化是一种用于揭示匿名图中实体间联系的技术,在检测恶意活动、网络分析、社交网络分析等方面至关重要。尽管它极为重要,但传统方法在获取准确的查询图数据时往往效率低下、困难重重。本文介绍了一种基于神经的非精确图去匿名化方法,包括嵌入阶段、比较阶段和匹配过程。嵌入阶段使用图卷积网络为查询图和匿名图生成嵌入向量。比较阶段使用神经张量网络来确定节点的相似性。匹配程序采用了一种精炼的贪婪算法来识别最佳节点配对。此外,我们还通过在各种真实数据集上进行的良好实验对其性能进行了全面评估。结果表明,我们提出的方法通过使用图嵌入向量,有效提高了图去匿名化的效率和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural-based inexact graph de-anonymization

Graph de-anonymization is a technique used to reveal connections between entities in anonymized graphs, which is crucial in detecting malicious activities, network analysis, social network analysis, and more. Despite its paramount importance, conventional methods often grapple with inefficiencies and challenges tied to obtaining accurate query graph data. This paper introduces a neural-based inexact graph de-anonymization, which comprises an embedding phase, a comparison phase, and a matching procedure. The embedding phase uses a graph convolutional network to generate embedding vectors for both the query and anonymized graphs. The comparison phase uses a neural tensor network to ascertain node resemblances. The matching procedure employs a refined greedy algorithm to discern optimal node pairings. Additionally, we comprehensively evaluate its performance via well-conducted experiments on various real datasets. The results demonstrate the effectiveness of our proposed approach in enhancing the efficiency and performance of graph de-anonymization through the use of graph embedding vectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
期刊最新文献
Erratum to “Exploring Personalized Internet of Things (PIoT), social connectivity, and Artificial Social Intelligence (ASI): A survey” [High-Confidence Computing 4 (2024) 100242] Three-dimensional dynamic gesture recognition method based on convolutional neural network Identity-based threshold (multi) signature with private accountability for privacy-preserving blockchain Navigating the Digital Twin Network landscape: A survey on architecture, applications, privacy and security Erratum to “An effective digital audio watermarking using a deep convolutional neural network with a search location optimization algorithm for improvement in Robustness and Imperceptibility” [High-Confid. Comput. 3 (2023) 100153]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1