模拟医院床位和疫苗接种对传染病动态的影响

IF 1.9 4区 数学 Q2 BIOLOGY Mathematical Biosciences Pub Date : 2023-12-23 DOI:10.1016/j.mbs.2023.109133
Jyoti Maurya , Konstantin B. Blyuss , A.K. Misra
{"title":"模拟医院床位和疫苗接种对传染病动态的影响","authors":"Jyoti Maurya ,&nbsp;Konstantin B. Blyuss ,&nbsp;A.K. Misra","doi":"10.1016/j.mbs.2023.109133","DOIUrl":null,"url":null,"abstract":"<div><p>The unprecedented scale and rapidity of dissemination of re-emerging and emerging infectious diseases impose new challenges for regulators and health authorities. To curb the dispersal of such diseases, proper management of healthcare facilities and vaccines are core drivers. In the present work, we assess the unified impact of healthcare facilities and vaccination on the control of an infectious disease by formulating a mathematical model. To formulate the model for any region, we consider four classes of human population; namely, susceptible, infected, hospitalized, and vaccinated. It is assumed that the increment in number of beds in hospitals is continuously made in proportion to the number of infected individuals. To ensure the occurrence of transcritical, saddle–node and Hopf bifurcations, the conditions are derived. The normal form is obtained to show the existence of Bogdanov–Takens bifurcation. To validate the analytically obtained results, we have conducted some numerical simulations. These results will be useful to public health authorities for planning appropriate health care resources and vaccination programs to diminish prevalence of infectious diseases.</p></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling the impact of hospital beds and vaccination on the dynamics of an infectious disease\",\"authors\":\"Jyoti Maurya ,&nbsp;Konstantin B. Blyuss ,&nbsp;A.K. Misra\",\"doi\":\"10.1016/j.mbs.2023.109133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unprecedented scale and rapidity of dissemination of re-emerging and emerging infectious diseases impose new challenges for regulators and health authorities. To curb the dispersal of such diseases, proper management of healthcare facilities and vaccines are core drivers. In the present work, we assess the unified impact of healthcare facilities and vaccination on the control of an infectious disease by formulating a mathematical model. To formulate the model for any region, we consider four classes of human population; namely, susceptible, infected, hospitalized, and vaccinated. It is assumed that the increment in number of beds in hospitals is continuously made in proportion to the number of infected individuals. To ensure the occurrence of transcritical, saddle–node and Hopf bifurcations, the conditions are derived. The normal form is obtained to show the existence of Bogdanov–Takens bifurcation. To validate the analytically obtained results, we have conducted some numerical simulations. These results will be useful to public health authorities for planning appropriate health care resources and vaccination programs to diminish prevalence of infectious diseases.</p></div>\",\"PeriodicalId\":51119,\"journal\":{\"name\":\"Mathematical Biosciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Biosciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025556423001736\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556423001736","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

再次出现和新出现的传染病规模空前、传播迅速,给监管机构和卫生部门带来了新的挑战。要遏制此类疾病的传播,妥善管理医疗设施和疫苗是核心驱动力。在本研究中,我们通过建立一个数学模型来评估医疗设施和疫苗接种对控制传染病的统一影响。为了建立适用于任何地区的模型,我们考虑了四类人群,即易感人群、感染人群、住院人群和接种疫苗人群。假定医院床位数的增加与感染人数成正比。为确保出现跨临界、鞍节点和霍普夫分岔,导出了相关条件。得到的正态形式证明了 Bogdanov-Takens 分岔的存在。为了验证分析得出的结果,我们进行了一些数值模拟。这些结果将有助于公共卫生部门规划适当的医疗资源和疫苗接种计划,以减少传染病的流行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling the impact of hospital beds and vaccination on the dynamics of an infectious disease

The unprecedented scale and rapidity of dissemination of re-emerging and emerging infectious diseases impose new challenges for regulators and health authorities. To curb the dispersal of such diseases, proper management of healthcare facilities and vaccines are core drivers. In the present work, we assess the unified impact of healthcare facilities and vaccination on the control of an infectious disease by formulating a mathematical model. To formulate the model for any region, we consider four classes of human population; namely, susceptible, infected, hospitalized, and vaccinated. It is assumed that the increment in number of beds in hospitals is continuously made in proportion to the number of infected individuals. To ensure the occurrence of transcritical, saddle–node and Hopf bifurcations, the conditions are derived. The normal form is obtained to show the existence of Bogdanov–Takens bifurcation. To validate the analytically obtained results, we have conducted some numerical simulations. These results will be useful to public health authorities for planning appropriate health care resources and vaccination programs to diminish prevalence of infectious diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Biosciences
Mathematical Biosciences 生物-生物学
CiteScore
7.50
自引率
2.30%
发文量
67
审稿时长
18 days
期刊介绍: Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.
期刊最新文献
A joint-threshold Filippov model describing the effect of intermittent androgen-deprivation therapy in controlling prostate cancer Adolescent vaping behaviours: Exploring the dynamics of a social contagion model Editorial Board Modeling virus-stimulated proliferation of CD4+ T-cell, cell-to-cell transmission and viral loss in HIV infection dynamics A mathematical model of melatonin synthesis and interactions with the circadian clock
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1