为机器人辅助血管内介入治疗开发具有触觉增强功能的直观界面。

IF 2.4 3区 计算机科学 Q2 COMPUTER SCIENCE, CYBERNETICS IEEE Transactions on Haptics Pub Date : 2023-12-25 DOI:10.1109/TOH.2023.3346479
Wenke Duan, Zihao Li, Olatunji M Omisore, Wenjing Du, Toluwanimi O Akinyemi, Xingyu Chen, Xing Gao, Hongbo Wang, Lei Wang
{"title":"为机器人辅助血管内介入治疗开发具有触觉增强功能的直观界面。","authors":"Wenke Duan, Zihao Li, Olatunji M Omisore, Wenjing Du, Toluwanimi O Akinyemi, Xingyu Chen, Xing Gao, Hongbo Wang, Lei Wang","doi":"10.1109/TOH.2023.3346479","DOIUrl":null,"url":null,"abstract":"<p><p>Robot-assisted endovascular intervention has the potential to reduce radiation exposure to surgeons and enhance outcomes of interventions. However, the success and safety of endovascular interventions depend on surgeons' ability to accurately manipulate endovascular tools such as guidewire and catheter and perceive their safety when cannulating patient's vessels. Currently, the existing interventional robots lack a haptic system for accurate force feedback that surgeons can rely on. In this paper, a haptic-enabled endovascular interventional robot was developed. We proposed a dynamic hysteresis compensation model to address the challenges of hysteresis and nonlinearity in magnetic powder brake-based haptic interface, which were used for providing high-precision and higher dynamic range haptic perception. Also, for the first time, a human perceptual-based haptic enhancement model and safety strategy were integrated with the custom-built haptic interface for enhancing sensation discrimination ability during robot-assisted endovascular interventions. This can effectively amplify even subtle changes in low-intensity operational forces such that surgeons can better discern any vessel-tools interaction force. Several experimental studies were performed to show that the haptic interface and the kinesthetic perception enhancement model can enhance the transparency of robot-assisted endovascular interventions, as well as promote the safety awareness of surgeon.</p>","PeriodicalId":13215,"journal":{"name":"IEEE Transactions on Haptics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of an Intuitive Interface with Haptic Enhancement for Robot-Assisted Endovascular Intervention.\",\"authors\":\"Wenke Duan, Zihao Li, Olatunji M Omisore, Wenjing Du, Toluwanimi O Akinyemi, Xingyu Chen, Xing Gao, Hongbo Wang, Lei Wang\",\"doi\":\"10.1109/TOH.2023.3346479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Robot-assisted endovascular intervention has the potential to reduce radiation exposure to surgeons and enhance outcomes of interventions. However, the success and safety of endovascular interventions depend on surgeons' ability to accurately manipulate endovascular tools such as guidewire and catheter and perceive their safety when cannulating patient's vessels. Currently, the existing interventional robots lack a haptic system for accurate force feedback that surgeons can rely on. In this paper, a haptic-enabled endovascular interventional robot was developed. We proposed a dynamic hysteresis compensation model to address the challenges of hysteresis and nonlinearity in magnetic powder brake-based haptic interface, which were used for providing high-precision and higher dynamic range haptic perception. Also, for the first time, a human perceptual-based haptic enhancement model and safety strategy were integrated with the custom-built haptic interface for enhancing sensation discrimination ability during robot-assisted endovascular interventions. This can effectively amplify even subtle changes in low-intensity operational forces such that surgeons can better discern any vessel-tools interaction force. Several experimental studies were performed to show that the haptic interface and the kinesthetic perception enhancement model can enhance the transparency of robot-assisted endovascular interventions, as well as promote the safety awareness of surgeon.</p>\",\"PeriodicalId\":13215,\"journal\":{\"name\":\"IEEE Transactions on Haptics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Haptics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/TOH.2023.3346479\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Haptics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/TOH.2023.3346479","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

机器人辅助血管内介入治疗有可能减少外科医生的辐射暴露,提高介入治疗的效果。然而,血管内介入治疗的成功与否和安全性取决于外科医生能否准确操作导丝和导管等血管内工具,以及在为患者血管插管时能否感受到它们的安全性。目前,现有的介入机器人缺乏外科医生可以依赖的准确力反馈触觉系统。本文开发了一种具有触觉功能的血管内介入机器人。我们提出了一种动态磁滞补偿模型,以解决基于磁粉制动器的触觉界面中存在的磁滞和非线性问题,从而提供高精度和更高动态范围的触觉感知。此外,还首次将基于人类感知的触觉增强模型和安全策略与定制的触觉界面相结合,以增强机器人辅助血管内介入治疗过程中的感觉分辨能力。这可以有效放大低强度操作力的细微变化,使外科医生能够更好地辨别血管与工具之间的相互作用力。多项实验研究表明,触觉界面和动觉增强模型可以提高机器人辅助血管内介入手术的透明度,并增强外科医生的安全意识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an Intuitive Interface with Haptic Enhancement for Robot-Assisted Endovascular Intervention.

Robot-assisted endovascular intervention has the potential to reduce radiation exposure to surgeons and enhance outcomes of interventions. However, the success and safety of endovascular interventions depend on surgeons' ability to accurately manipulate endovascular tools such as guidewire and catheter and perceive their safety when cannulating patient's vessels. Currently, the existing interventional robots lack a haptic system for accurate force feedback that surgeons can rely on. In this paper, a haptic-enabled endovascular interventional robot was developed. We proposed a dynamic hysteresis compensation model to address the challenges of hysteresis and nonlinearity in magnetic powder brake-based haptic interface, which were used for providing high-precision and higher dynamic range haptic perception. Also, for the first time, a human perceptual-based haptic enhancement model and safety strategy were integrated with the custom-built haptic interface for enhancing sensation discrimination ability during robot-assisted endovascular interventions. This can effectively amplify even subtle changes in low-intensity operational forces such that surgeons can better discern any vessel-tools interaction force. Several experimental studies were performed to show that the haptic interface and the kinesthetic perception enhancement model can enhance the transparency of robot-assisted endovascular interventions, as well as promote the safety awareness of surgeon.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Haptics
IEEE Transactions on Haptics COMPUTER SCIENCE, CYBERNETICS-
CiteScore
5.90
自引率
13.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: IEEE Transactions on Haptics (ToH) is a scholarly archival journal that addresses the science, technology, and applications associated with information acquisition and object manipulation through touch. Haptic interactions relevant to this journal include all aspects of manual exploration and manipulation of objects by humans, machines and interactions between the two, performed in real, virtual, teleoperated or networked environments. Research areas of relevance to this publication include, but are not limited to, the following topics: Human haptic and multi-sensory perception and action, Aspects of motor control that explicitly pertain to human haptics, Haptic interactions via passive or active tools and machines, Devices that sense, enable, or create haptic interactions locally or at a distance, Haptic rendering and its association with graphic and auditory rendering in virtual reality, Algorithms, controls, and dynamics of haptic devices, users, and interactions between the two, Human-machine performance and safety with haptic feedback, Haptics in the context of human-computer interactions, Systems and networks using haptic devices and interactions, including multi-modal feedback, Application of the above, for example in areas such as education, rehabilitation, medicine, computer-aided design, skills training, computer games, driver controls, simulation, and visualization.
期刊最新文献
Investigating the Kappa Effect Elicited Through Concurrent Visual and Tactile Stimulation. Two rapid alternatives compared to the staircase method for the estimation of the vibrotactile perception threshold. Multichannel Vibrotactile Glove: Validation of a new device designed to sense vibrations. Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance. VT-SGN:Spiking Graph Neural Network for Neuromorphic Visual-Tactile Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1