Huiyang Guo, Yuanchao Liu, Xiaoxian Wu, Manjun Cai, Ming Jiang, Huiping Hu
{"title":"微孢子虫发酵提取物对白色念珠菌抑制作用的研究","authors":"Huiyang Guo, Yuanchao Liu, Xiaoxian Wu, Manjun Cai, Ming Jiang, Huiping Hu","doi":"10.1007/s10123-023-00467-6","DOIUrl":null,"url":null,"abstract":"<p><p>Candida albicans is one of the most common species of Candida, which cause various mucosal and systemic infectious diseases. However, the resistance rate to existing clinical antifungal drugs gradually increases in C. albicans. Therefore, new antifungal drugs must be developed to solve the current problem. This study discovered that the solid fermented ethyl acetate crude extract of Microporus vernicipes had inhibitory activity on C. albicans. This study determined that the Mv5 components had significantly inhibited the activity of C. albicans using column chromatography separation component screening. The components included 23 compounds of fatty acids and their derivatives, alkaloids, phenols, and other classes using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HR-MS) analysis, with fatty acids constituting the primary components. The mechanism of action showed that the minimum inhibitory concentration (MIC) of Mv5 components against C. albicans was 15.63 μg/mL, while minimum fungicidal concentration (MFC) was 31.25 μg/mL. Mv5 components can inhibit the early biofilm formation and destroy the mature biofilm structure. It can inhibit the germ tube growth of C. albicans, thereby inhibiting the transformation of yeast morphology to hyphae. We detected 193 differentially expressed genes, including 156 upregulated and 37 downregulated genes in the Mv5 components of the MIC concentration group. We detected 391 differentially expressed genes, including 334 upregulated and 57 downregulated expression genes in the MFC concentration group. Among these differentially expressed genes, the genes related to mycelium and biofilm formation were significantly downregulated. GO enrichment analysis presented that single-organism process metabolic process, and cellular processes were the biological processes with the most gene enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG)of Mv5 components were mainly enriched in metabolic pathways, such as meiosis yeast and amino acid metabolism. Therefore, it is believed that the fermentation extract of M. vernicipes inhibits C. albicans, which can provide clues for developing effective antifungal drugs.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on the inhibitory effect of fermentation extract of Microporus vernicipes on Candida albicans.\",\"authors\":\"Huiyang Guo, Yuanchao Liu, Xiaoxian Wu, Manjun Cai, Ming Jiang, Huiping Hu\",\"doi\":\"10.1007/s10123-023-00467-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Candida albicans is one of the most common species of Candida, which cause various mucosal and systemic infectious diseases. However, the resistance rate to existing clinical antifungal drugs gradually increases in C. albicans. Therefore, new antifungal drugs must be developed to solve the current problem. This study discovered that the solid fermented ethyl acetate crude extract of Microporus vernicipes had inhibitory activity on C. albicans. This study determined that the Mv5 components had significantly inhibited the activity of C. albicans using column chromatography separation component screening. The components included 23 compounds of fatty acids and their derivatives, alkaloids, phenols, and other classes using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HR-MS) analysis, with fatty acids constituting the primary components. The mechanism of action showed that the minimum inhibitory concentration (MIC) of Mv5 components against C. albicans was 15.63 μg/mL, while minimum fungicidal concentration (MFC) was 31.25 μg/mL. Mv5 components can inhibit the early biofilm formation and destroy the mature biofilm structure. It can inhibit the germ tube growth of C. albicans, thereby inhibiting the transformation of yeast morphology to hyphae. We detected 193 differentially expressed genes, including 156 upregulated and 37 downregulated genes in the Mv5 components of the MIC concentration group. We detected 391 differentially expressed genes, including 334 upregulated and 57 downregulated expression genes in the MFC concentration group. Among these differentially expressed genes, the genes related to mycelium and biofilm formation were significantly downregulated. GO enrichment analysis presented that single-organism process metabolic process, and cellular processes were the biological processes with the most gene enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG)of Mv5 components were mainly enriched in metabolic pathways, such as meiosis yeast and amino acid metabolism. Therefore, it is believed that the fermentation extract of M. vernicipes inhibits C. albicans, which can provide clues for developing effective antifungal drugs.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-023-00467-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-023-00467-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Study on the inhibitory effect of fermentation extract of Microporus vernicipes on Candida albicans.
Candida albicans is one of the most common species of Candida, which cause various mucosal and systemic infectious diseases. However, the resistance rate to existing clinical antifungal drugs gradually increases in C. albicans. Therefore, new antifungal drugs must be developed to solve the current problem. This study discovered that the solid fermented ethyl acetate crude extract of Microporus vernicipes had inhibitory activity on C. albicans. This study determined that the Mv5 components had significantly inhibited the activity of C. albicans using column chromatography separation component screening. The components included 23 compounds of fatty acids and their derivatives, alkaloids, phenols, and other classes using ultra-high performance liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HR-MS) analysis, with fatty acids constituting the primary components. The mechanism of action showed that the minimum inhibitory concentration (MIC) of Mv5 components against C. albicans was 15.63 μg/mL, while minimum fungicidal concentration (MFC) was 31.25 μg/mL. Mv5 components can inhibit the early biofilm formation and destroy the mature biofilm structure. It can inhibit the germ tube growth of C. albicans, thereby inhibiting the transformation of yeast morphology to hyphae. We detected 193 differentially expressed genes, including 156 upregulated and 37 downregulated genes in the Mv5 components of the MIC concentration group. We detected 391 differentially expressed genes, including 334 upregulated and 57 downregulated expression genes in the MFC concentration group. Among these differentially expressed genes, the genes related to mycelium and biofilm formation were significantly downregulated. GO enrichment analysis presented that single-organism process metabolic process, and cellular processes were the biological processes with the most gene enrichment. Kyoto Encyclopedia of Genes and Genomes (KEGG)of Mv5 components were mainly enriched in metabolic pathways, such as meiosis yeast and amino acid metabolism. Therefore, it is believed that the fermentation extract of M. vernicipes inhibits C. albicans, which can provide clues for developing effective antifungal drugs.