{"title":"新发现的 miRNA 在神经性疼痛中的功能:从最新发现过渡到创新的内在机制。","authors":"Hasan Golmakani, Amir Azimian, Ebrahim Golmakani","doi":"10.1177/17448069231225845","DOIUrl":null,"url":null,"abstract":"<p><p>Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.</p>","PeriodicalId":19010,"journal":{"name":"Molecular Pain","volume":" ","pages":"17448069231225845"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851769/pdf/","citationCount":"0","resultStr":"{\"title\":\"Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms.\",\"authors\":\"Hasan Golmakani, Amir Azimian, Ebrahim Golmakani\",\"doi\":\"10.1177/17448069231225845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.</p>\",\"PeriodicalId\":19010,\"journal\":{\"name\":\"Molecular Pain\",\"volume\":\" \",\"pages\":\"17448069231225845\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851769/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Pain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/17448069231225845\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17448069231225845","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Newly discovered functions of miRNAs in neuropathic pain: Transitioning from recent discoveries to innovative underlying mechanisms.
Neuropathic pain is a widespread clinical issue caused by somatosensory nervous system damage, affecting numerous individuals. It poses considerable economic and public health challenges, and managing it can be challenging due to unclear underlying mechanisms. Nevertheless, emerging evidence suggests that neurogenic inflammation and neuroinflammation play a role in developing pain patterns. Emerging evidence suggests that neurogenic inflammation and neuroinflammation play significant roles in developing neuropathic pain within the nervous system. Increased/decreased miRNA expression patterns could affect the progression of neuropathic and inflammatory pain by controlling nerve regeneration, neuroinflammation, and the expression of abnormal ion channels. However, our limited knowledge of miRNA targets hinders a complete grasp of miRNA's functions. Meanwhile, exploring exosomal miRNA, a recently uncovered role, has significantly advanced our comprehension of neuropathic pain's pathophysiology in recent times. In this review, we present a comprehensive overview of the latest miRNA studies and explore the possible ways miRNAs might play a role in the development of neuropathic pain.
期刊介绍:
Molecular Pain is a peer-reviewed, open access journal that considers manuscripts in pain research at the cellular, subcellular and molecular levels. Molecular Pain provides a forum for molecular pain scientists to communicate their research findings in a targeted manner to others in this important and growing field.