{"title":"预测抑郁症患者认知障碍风险的提名图。","authors":"Ya-Ling Jian, Shoumei Jia, Shenxun Shi, Zhongying Shi, Ying Zhao","doi":"10.1002/nur.22364","DOIUrl":null,"url":null,"abstract":"<p><p>This study was to describe the cognitive function status in patients with depressive disorder and to construct a nomogram model to predict the risk factors of cognitive impairment in these patients. From October 2019 to February 2021, a total of 141 patients with depressive disorder completed the survey in two hospitals. The Montreal cognitive assessment (MoCA) was used with a cutoff score of 26 to differentiate cognitive impairment. Univariable and multivariable logistic regression analyses were conducted to identify independent risk factors. A nomogram was then constructed based on the results of the multivariable logistic regression analysis. The patients had an average MoCA score of 23.99 ± 3.02. The multivariable logistic regression analysis revealed that age (OR: 1.096, 95% CI: 1.042-1.153, p < 0.001), education (OR: 0.065, 95% CI: 0.016-0.263, p < 0.001), depression severity (OR: 1.878, 95% CI: 1.021-3.456, p = 0.043), and sleep quality (OR: 2.454, 95% CI: 1.400-4.301, p = 0.002) were independent risk factors for cognitive impairment in patients with depressive disorder. The area under receiver operating characteristic (ROC) curves was 0.868 (95% CI: 0.807-0.929), indicating good discriminability of the model. The calibration curve of the model and the Hosmer-Lemeshow test (p = 0.571) demonstrated a well-fitted model with high calibration. Age, education, depression severity, and sleep quality were found to be significant predictors of cognitive function. A nomogram model was developed to predict cognitive impairment in patients with depressive disorder, providing a solid foundation for clinical interventions.</p>","PeriodicalId":54492,"journal":{"name":"Research in Nursing & Health","volume":" ","pages":"302-311"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A nomogram to predict the risk of cognitive impairment in patients with depressive disorder.\",\"authors\":\"Ya-Ling Jian, Shoumei Jia, Shenxun Shi, Zhongying Shi, Ying Zhao\",\"doi\":\"10.1002/nur.22364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study was to describe the cognitive function status in patients with depressive disorder and to construct a nomogram model to predict the risk factors of cognitive impairment in these patients. From October 2019 to February 2021, a total of 141 patients with depressive disorder completed the survey in two hospitals. The Montreal cognitive assessment (MoCA) was used with a cutoff score of 26 to differentiate cognitive impairment. Univariable and multivariable logistic regression analyses were conducted to identify independent risk factors. A nomogram was then constructed based on the results of the multivariable logistic regression analysis. The patients had an average MoCA score of 23.99 ± 3.02. The multivariable logistic regression analysis revealed that age (OR: 1.096, 95% CI: 1.042-1.153, p < 0.001), education (OR: 0.065, 95% CI: 0.016-0.263, p < 0.001), depression severity (OR: 1.878, 95% CI: 1.021-3.456, p = 0.043), and sleep quality (OR: 2.454, 95% CI: 1.400-4.301, p = 0.002) were independent risk factors for cognitive impairment in patients with depressive disorder. The area under receiver operating characteristic (ROC) curves was 0.868 (95% CI: 0.807-0.929), indicating good discriminability of the model. The calibration curve of the model and the Hosmer-Lemeshow test (p = 0.571) demonstrated a well-fitted model with high calibration. Age, education, depression severity, and sleep quality were found to be significant predictors of cognitive function. A nomogram model was developed to predict cognitive impairment in patients with depressive disorder, providing a solid foundation for clinical interventions.</p>\",\"PeriodicalId\":54492,\"journal\":{\"name\":\"Research in Nursing & Health\",\"volume\":\" \",\"pages\":\"302-311\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nursing & Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nur.22364\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/12/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"NURSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nursing & Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nur.22364","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"NURSING","Score":null,"Total":0}
A nomogram to predict the risk of cognitive impairment in patients with depressive disorder.
This study was to describe the cognitive function status in patients with depressive disorder and to construct a nomogram model to predict the risk factors of cognitive impairment in these patients. From October 2019 to February 2021, a total of 141 patients with depressive disorder completed the survey in two hospitals. The Montreal cognitive assessment (MoCA) was used with a cutoff score of 26 to differentiate cognitive impairment. Univariable and multivariable logistic regression analyses were conducted to identify independent risk factors. A nomogram was then constructed based on the results of the multivariable logistic regression analysis. The patients had an average MoCA score of 23.99 ± 3.02. The multivariable logistic regression analysis revealed that age (OR: 1.096, 95% CI: 1.042-1.153, p < 0.001), education (OR: 0.065, 95% CI: 0.016-0.263, p < 0.001), depression severity (OR: 1.878, 95% CI: 1.021-3.456, p = 0.043), and sleep quality (OR: 2.454, 95% CI: 1.400-4.301, p = 0.002) were independent risk factors for cognitive impairment in patients with depressive disorder. The area under receiver operating characteristic (ROC) curves was 0.868 (95% CI: 0.807-0.929), indicating good discriminability of the model. The calibration curve of the model and the Hosmer-Lemeshow test (p = 0.571) demonstrated a well-fitted model with high calibration. Age, education, depression severity, and sleep quality were found to be significant predictors of cognitive function. A nomogram model was developed to predict cognitive impairment in patients with depressive disorder, providing a solid foundation for clinical interventions.
期刊介绍:
Research in Nursing & Health ( RINAH ) is a peer-reviewed general research journal devoted to publication of a wide range of research that will inform the practice of nursing and other health disciplines. The editors invite reports of research describing problems and testing interventions related to health phenomena, health care and self-care, clinical organization and administration; and the testing of research findings in practice. Research protocols are considered if funded in a peer-reviewed process by an agency external to the authors’ home institution and if the work is in progress. Papers on research methods and techniques are appropriate if they go beyond what is already generally available in the literature and include description of successful use of the method. Theory papers are accepted if each proposition is supported by research evidence. Systematic reviews of the literature are reviewed if PRISMA guidelines are followed. Letters to the editor commenting on published articles are welcome.