{"title":"人类与自动驾驶机器人组队场景中优化自适应功能分配的计算框架","authors":"Sooyung Byeon;Joonwon Choi;Inseok Hwang","doi":"10.1109/OJCSYS.2023.3340034","DOIUrl":null,"url":null,"abstract":"This article proposes a quantitative framework for optimally allocating task functions in human-autonomy teaming (HAT). HAT involves cooperation between humans and autonomous agents to achieve common goals. As humans and autonomous agents possess different capabilities, function allocation plays a crucial role in ensuring effective HAT. However, designing the best adaptive function allocation remains a challenge, as existing methods often rely on qualitative rules and intensive human-subject studies. To address this limitation, we propose a computational function allocation approach that leverages cognitive engineering, computational work models, and optimization techniques. The proposed optimal adaptive function allocation method is composed of three main elements: 1) analyze the teamwork to identify a set of all possible function allocations within a team construction, 2) numerically simulate the teamwork in temporal semantics to explore the interaction of the team with complex environments using the identified function allocations in a trial-and-error manner, and 3) optimize the adaptive function allocation with respect to a given situation such as physical conditions, available information resources, and human mental workload. For the optimization, we utilize performance metrics such as task performance, human mental workload, and coherency in function allocations. To illustrate the effectiveness of the proposed framework, we present a simulated HAT scenario involving a human work model and drone fleet for last-mile delivery in disaster relief operations.","PeriodicalId":73299,"journal":{"name":"IEEE open journal of control systems","volume":"3 ","pages":"32-44"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10345767","citationCount":"0","resultStr":"{\"title\":\"A Computational Framework for Optimal Adaptive Function Allocation in a Human-Autonomy Teaming Scenario\",\"authors\":\"Sooyung Byeon;Joonwon Choi;Inseok Hwang\",\"doi\":\"10.1109/OJCSYS.2023.3340034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a quantitative framework for optimally allocating task functions in human-autonomy teaming (HAT). HAT involves cooperation between humans and autonomous agents to achieve common goals. As humans and autonomous agents possess different capabilities, function allocation plays a crucial role in ensuring effective HAT. However, designing the best adaptive function allocation remains a challenge, as existing methods often rely on qualitative rules and intensive human-subject studies. To address this limitation, we propose a computational function allocation approach that leverages cognitive engineering, computational work models, and optimization techniques. The proposed optimal adaptive function allocation method is composed of three main elements: 1) analyze the teamwork to identify a set of all possible function allocations within a team construction, 2) numerically simulate the teamwork in temporal semantics to explore the interaction of the team with complex environments using the identified function allocations in a trial-and-error manner, and 3) optimize the adaptive function allocation with respect to a given situation such as physical conditions, available information resources, and human mental workload. For the optimization, we utilize performance metrics such as task performance, human mental workload, and coherency in function allocations. To illustrate the effectiveness of the proposed framework, we present a simulated HAT scenario involving a human work model and drone fleet for last-mile delivery in disaster relief operations.\",\"PeriodicalId\":73299,\"journal\":{\"name\":\"IEEE open journal of control systems\",\"volume\":\"3 \",\"pages\":\"32-44\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10345767\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE open journal of control systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10345767/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE open journal of control systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10345767/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一个定量框架,用于优化人类-自主团队合作(HAT)中的任务功能分配。HAT 涉及人类与自主代理之间为实现共同目标而开展的合作。由于人类和自主代理拥有不同的能力,功能分配在确保有效的 HAT 中起着至关重要的作用。然而,设计最佳的自适应功能分配仍然是一项挑战,因为现有的方法通常依赖于定性规则和密集的人体研究。为了解决这一局限性,我们提出了一种计算功能分配方法,该方法利用了认知工程学、计算工作模型和优化技术。所提出的最优自适应功能分配方法由三个主要元素组成:1)分析团队工作,确定团队建设中所有可能的功能分配集合;2)在时间语义上对团队工作进行数值模拟,以试错方式探索团队与复杂环境的互动,并使用确定的功能分配;3)针对给定情况(如物理条件、可用信息资源和人的心理工作量)优化自适应功能分配。在优化过程中,我们利用任务性能、人的精神工作量和功能分配一致性等性能指标。为了说明所提框架的有效性,我们提出了一个模拟的 HAT 场景,其中涉及人类工作模型和无人机队,用于救灾行动中的最后一英里配送。
A Computational Framework for Optimal Adaptive Function Allocation in a Human-Autonomy Teaming Scenario
This article proposes a quantitative framework for optimally allocating task functions in human-autonomy teaming (HAT). HAT involves cooperation between humans and autonomous agents to achieve common goals. As humans and autonomous agents possess different capabilities, function allocation plays a crucial role in ensuring effective HAT. However, designing the best adaptive function allocation remains a challenge, as existing methods often rely on qualitative rules and intensive human-subject studies. To address this limitation, we propose a computational function allocation approach that leverages cognitive engineering, computational work models, and optimization techniques. The proposed optimal adaptive function allocation method is composed of three main elements: 1) analyze the teamwork to identify a set of all possible function allocations within a team construction, 2) numerically simulate the teamwork in temporal semantics to explore the interaction of the team with complex environments using the identified function allocations in a trial-and-error manner, and 3) optimize the adaptive function allocation with respect to a given situation such as physical conditions, available information resources, and human mental workload. For the optimization, we utilize performance metrics such as task performance, human mental workload, and coherency in function allocations. To illustrate the effectiveness of the proposed framework, we present a simulated HAT scenario involving a human work model and drone fleet for last-mile delivery in disaster relief operations.