V I Fedchenko, A V Veselovsky, A T Kopylov, A E Medvedev
{"title":"从人类肾酶的氨基酸序列中寻找潜在的降血压肽,并在该蛋白质的蛋白水解片段中对其进行鉴定。","authors":"V I Fedchenko, A V Veselovsky, A T Kopylov, A E Medvedev","doi":"10.18097/PBMC20236906403","DOIUrl":null,"url":null,"abstract":"<p><p>Renalase (RNLS) is a secretory protein discovered in 2005. It plays an important role in the regulation of blood pressure. Studies by two independent laboratories have shown that administration of purified recombinant RNLS reduced blood pressure in experimental animals. However, the mechanisms of the antihypertensive effect of RNLS still remain unclear, especially in the context of the shift in the catalytic paradigm of this protein. In addition, there is growing evidence that endogenous plasma/serum RNLS, detected by enzyme immunoassay, is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively cleaved during short-term incubation with human plasma samples. This suggests that the antihypertensive effect of RNLS may be due to peptides formed during proteolytic processing. Based on the results of a bioinformatics analysis of potential RNLS cleavage sites (Fedchenko et al., Medical Hypotheses, 2022; DOI: 10.1016/j.mehy.2022.110895), a number of short peptides have been identified in the RNLS sequence that show similarity to fragments of known peptide inhibitors of angiotensin-converting enzyme. Some of them were found as a part of larger RNLS peptides, formed during RNLS cleavage by chymotrypsin and, and to a lesser extent, by trypsin.</p>","PeriodicalId":8889,"journal":{"name":"Biomeditsinskaya khimiya","volume":"69 6","pages":"403-408"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The search for potential hypotensive peptides in the amino acid sequence of human renalase and their identification in proteolytic fragments of this protein.\",\"authors\":\"V I Fedchenko, A V Veselovsky, A T Kopylov, A E Medvedev\",\"doi\":\"10.18097/PBMC20236906403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Renalase (RNLS) is a secretory protein discovered in 2005. It plays an important role in the regulation of blood pressure. Studies by two independent laboratories have shown that administration of purified recombinant RNLS reduced blood pressure in experimental animals. However, the mechanisms of the antihypertensive effect of RNLS still remain unclear, especially in the context of the shift in the catalytic paradigm of this protein. In addition, there is growing evidence that endogenous plasma/serum RNLS, detected by enzyme immunoassay, is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively cleaved during short-term incubation with human plasma samples. This suggests that the antihypertensive effect of RNLS may be due to peptides formed during proteolytic processing. Based on the results of a bioinformatics analysis of potential RNLS cleavage sites (Fedchenko et al., Medical Hypotheses, 2022; DOI: 10.1016/j.mehy.2022.110895), a number of short peptides have been identified in the RNLS sequence that show similarity to fragments of known peptide inhibitors of angiotensin-converting enzyme. Some of them were found as a part of larger RNLS peptides, formed during RNLS cleavage by chymotrypsin and, and to a lesser extent, by trypsin.</p>\",\"PeriodicalId\":8889,\"journal\":{\"name\":\"Biomeditsinskaya khimiya\",\"volume\":\"69 6\",\"pages\":\"403-408\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomeditsinskaya khimiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18097/PBMC20236906403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomeditsinskaya khimiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18097/PBMC20236906403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The search for potential hypotensive peptides in the amino acid sequence of human renalase and their identification in proteolytic fragments of this protein.
Renalase (RNLS) is a secretory protein discovered in 2005. It plays an important role in the regulation of blood pressure. Studies by two independent laboratories have shown that administration of purified recombinant RNLS reduced blood pressure in experimental animals. However, the mechanisms of the antihypertensive effect of RNLS still remain unclear, especially in the context of the shift in the catalytic paradigm of this protein. In addition, there is growing evidence that endogenous plasma/serum RNLS, detected by enzyme immunoassay, is not an intact protein secreted into the extracellular space, and exogenous recombinant RNLS is effectively cleaved during short-term incubation with human plasma samples. This suggests that the antihypertensive effect of RNLS may be due to peptides formed during proteolytic processing. Based on the results of a bioinformatics analysis of potential RNLS cleavage sites (Fedchenko et al., Medical Hypotheses, 2022; DOI: 10.1016/j.mehy.2022.110895), a number of short peptides have been identified in the RNLS sequence that show similarity to fragments of known peptide inhibitors of angiotensin-converting enzyme. Some of them were found as a part of larger RNLS peptides, formed during RNLS cleavage by chymotrypsin and, and to a lesser extent, by trypsin.
Biomeditsinskaya khimiyaBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
1.30
自引率
0.00%
发文量
49
期刊介绍:
The aim of the Russian-language journal "Biomeditsinskaya Khimiya" (Biomedical Chemistry) is to introduce the latest results obtained by scientists from Russia and other Republics of the Former Soviet Union. The Journal will cover all major areas of Biomedical chemistry, including neurochemistry, clinical chemistry, molecular biology of pathological processes, gene therapy, development of new drugs and their biochemical pharmacology, introduction and advertisement of new (biochemical) methods into experimental and clinical medicine etc. The Journal also publish review articles. All issues of journal usually contain invited reviews. Papers written in Russian contain abstract (in English).