{"title":"利用 CNN-KPCA-RF 模型对多组分气体进行定性和定量研究","authors":"Haibo Liang, Yu Long, Gang Liu","doi":"10.1016/j.vibspec.2023.103647","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the accuracy of multi-component gas analysis in infrared spectroscopy and simplify the workflow, an infrared spectroscopy gas detection method based on an improved convolutional neural network is proposed. This method can not only identify a variety of gas categories but also finely identify the concentration of gas. To verify the model identification effect proposed in this paper, eight kinds of gases such as CH4 and C2H6 were used as the sample gases for gas identification and concentration classification, and the corresponding hardware was used to complete the development of the system. The experimental results show that the accuracy of the model method for gas species identification can reach 90%, and the accuracy for concentration identification is the same. In addition, compared with the traditional CNN method, the recognition effect is significantly improved. With the improvement of the data set, the number of gas categories detected by this method and the measurement accuracy will be improved.</p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"130 ","pages":"Article 103647"},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0924203123001546/pdfft?md5=ca21f506a6e1480be5b3cb97a4570bc1&pid=1-s2.0-S0924203123001546-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Qualitative and quantitative studies of multicomponent gas by CNN-KPCA-RF model\",\"authors\":\"Haibo Liang, Yu Long, Gang Liu\",\"doi\":\"10.1016/j.vibspec.2023.103647\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To improve the accuracy of multi-component gas analysis in infrared spectroscopy and simplify the workflow, an infrared spectroscopy gas detection method based on an improved convolutional neural network is proposed. This method can not only identify a variety of gas categories but also finely identify the concentration of gas. To verify the model identification effect proposed in this paper, eight kinds of gases such as CH4 and C2H6 were used as the sample gases for gas identification and concentration classification, and the corresponding hardware was used to complete the development of the system. The experimental results show that the accuracy of the model method for gas species identification can reach 90%, and the accuracy for concentration identification is the same. In addition, compared with the traditional CNN method, the recognition effect is significantly improved. With the improvement of the data set, the number of gas categories detected by this method and the measurement accuracy will be improved.</p></div>\",\"PeriodicalId\":23656,\"journal\":{\"name\":\"Vibrational Spectroscopy\",\"volume\":\"130 \",\"pages\":\"Article 103647\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001546/pdfft?md5=ca21f506a6e1480be5b3cb97a4570bc1&pid=1-s2.0-S0924203123001546-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vibrational Spectroscopy\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924203123001546\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001546","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Qualitative and quantitative studies of multicomponent gas by CNN-KPCA-RF model
To improve the accuracy of multi-component gas analysis in infrared spectroscopy and simplify the workflow, an infrared spectroscopy gas detection method based on an improved convolutional neural network is proposed. This method can not only identify a variety of gas categories but also finely identify the concentration of gas. To verify the model identification effect proposed in this paper, eight kinds of gases such as CH4 and C2H6 were used as the sample gases for gas identification and concentration classification, and the corresponding hardware was used to complete the development of the system. The experimental results show that the accuracy of the model method for gas species identification can reach 90%, and the accuracy for concentration identification is the same. In addition, compared with the traditional CNN method, the recognition effect is significantly improved. With the improvement of the data set, the number of gas categories detected by this method and the measurement accuracy will be improved.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.