{"title":"增强比特币交易确认预测:结合神经网络和 XGBoost 的混合模型","authors":"","doi":"10.1007/s11280-023-01212-9","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (<strong>Hybrid-CTEN</strong>), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.</p>","PeriodicalId":501180,"journal":{"name":"World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing bitcoin transaction confirmation prediction: a hybrid model combining neural networks and XGBoost\",\"authors\":\"\",\"doi\":\"10.1007/s11280-023-01212-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (<strong>Hybrid-CTEN</strong>), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.</p>\",\"PeriodicalId\":501180,\"journal\":{\"name\":\"World Wide Web\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Wide Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11280-023-01212-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01212-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing bitcoin transaction confirmation prediction: a hybrid model combining neural networks and XGBoost
Abstract
With Bitcoin being universally recognized as the most popular cryptocurrency, more Bitcoin transactions are expected to be populated to the Bitcoin blockchain system. As a result, many transactions can encounter different confirmation delays. Concerned about this, it becomes vital to help a user understand (if possible) how long it may take for a transaction to be confirmed in the Bitcoin blockchain. In this work, we address the issue of predicting confirmation time within a block interval rather than pinpointing a specific timestamp. After dividing the future into a set of block intervals (i.e., classes), the prediction of a transaction’s confirmation is treated as a classification problem. To solve it, we propose a framework, Hybrid Confirmation Time Estimation Network (Hybrid-CTEN), based on neural networks and XGBoost to predict transaction confirmation time in the Bitcoin blockchain system using three different sources of information: historical transactions in the blockchain, unconfirmed transactions in the mempool, as well as the estimated transaction itself. Finally, experiments on real-world blockchain data demonstrate that, other than XGBoost excelling in the binary classification case (to predict whether a transaction will be confirmed in the next generated block), our proposed framework Hybrid-CTEN outperforms state-of-the-art methods on precision, recall and f1-score on all the multiclass classification cases (4-class, 6-class and 8-class) to predict in which future block interval a transaction will be confirmed.