{"title":"美国威斯康星州中西部的黄土运输面","authors":"Randall J. Schaetzl","doi":"10.1017/qua.2023.68","DOIUrl":null,"url":null,"abstract":"The concept of a loess transportation surface portends that saltating sands deflate silt/dust and send them into suspension. This process continues until a topographic barrier stops the saltating sand, allowing loess deposits to accumulate downwind. This paper reports on loess transportation surfaces in west-central Wisconsin, USA. During the postglacial period, cold, dry conditions coincided with strong northwesterly winds to initiate widespread saltation of freely available sands, deflating any preexisting loess deposits. Large parts of the study area are transportation surfaces, and lack loess. Loess deposits were only able to accumulate at “protected” sites—downwind from (east of) topographic barriers, such as isolated bedrock uplands and the north-to-south flowing Black River. Loess in locations from these barriers is thicker (sometimes >5 m) than would be expected, and in places has even accumulated above preexisting loess deposits. For example, downwind (east) of the Black River, most of the low-relief landscape is covered with ≈40–70 cm of silty loess, even though it is many tens of kilometers from the initial loess source. Upwind of the river, on the transportation surface, the low-relief landscape is only intermittently mantled with thin, scattered deposits of silty-sandy eolian sediment, and generally lacks loess.","PeriodicalId":49643,"journal":{"name":"Quaternary Research","volume":"70 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loess transportation surfaces in west-central Wisconsin, USA\",\"authors\":\"Randall J. Schaetzl\",\"doi\":\"10.1017/qua.2023.68\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of a loess transportation surface portends that saltating sands deflate silt/dust and send them into suspension. This process continues until a topographic barrier stops the saltating sand, allowing loess deposits to accumulate downwind. This paper reports on loess transportation surfaces in west-central Wisconsin, USA. During the postglacial period, cold, dry conditions coincided with strong northwesterly winds to initiate widespread saltation of freely available sands, deflating any preexisting loess deposits. Large parts of the study area are transportation surfaces, and lack loess. Loess deposits were only able to accumulate at “protected” sites—downwind from (east of) topographic barriers, such as isolated bedrock uplands and the north-to-south flowing Black River. Loess in locations from these barriers is thicker (sometimes >5 m) than would be expected, and in places has even accumulated above preexisting loess deposits. For example, downwind (east) of the Black River, most of the low-relief landscape is covered with ≈40–70 cm of silty loess, even though it is many tens of kilometers from the initial loess source. Upwind of the river, on the transportation surface, the low-relief landscape is only intermittently mantled with thin, scattered deposits of silty-sandy eolian sediment, and generally lacks loess.\",\"PeriodicalId\":49643,\"journal\":{\"name\":\"Quaternary Research\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quaternary Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1017/qua.2023.68\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quaternary Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/qua.2023.68","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Loess transportation surfaces in west-central Wisconsin, USA
The concept of a loess transportation surface portends that saltating sands deflate silt/dust and send them into suspension. This process continues until a topographic barrier stops the saltating sand, allowing loess deposits to accumulate downwind. This paper reports on loess transportation surfaces in west-central Wisconsin, USA. During the postglacial period, cold, dry conditions coincided with strong northwesterly winds to initiate widespread saltation of freely available sands, deflating any preexisting loess deposits. Large parts of the study area are transportation surfaces, and lack loess. Loess deposits were only able to accumulate at “protected” sites—downwind from (east of) topographic barriers, such as isolated bedrock uplands and the north-to-south flowing Black River. Loess in locations from these barriers is thicker (sometimes >5 m) than would be expected, and in places has even accumulated above preexisting loess deposits. For example, downwind (east) of the Black River, most of the low-relief landscape is covered with ≈40–70 cm of silty loess, even though it is many tens of kilometers from the initial loess source. Upwind of the river, on the transportation surface, the low-relief landscape is only intermittently mantled with thin, scattered deposits of silty-sandy eolian sediment, and generally lacks loess.
期刊介绍:
Quaternary Research is an international journal devoted to the advancement of the interdisciplinary understanding of the Quaternary Period. We aim to publish articles of broad interest with relevance to more than one discipline, and that constitute a significant new contribution to Quaternary science. The journal’s scope is global, building on its nearly 50-year history in advancing the understanding of earth and human history through interdisciplinary study of the last 2.6 million years.