{"title":"改进抛物线 PDE 时空 FOSLS 的速率","authors":"Gregor Gantner, Rob Stevenson","doi":"10.1007/s00211-023-01387-3","DOIUrl":null,"url":null,"abstract":"<p>We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components <span>\\((u_1,\\textbf{u}_2)=(u,-\\nabla _\\textbf{x} u)\\)</span>. The corresponding operator is boundedly invertible between a Hilbert space <i>U</i> and a Cartesian product of <span>\\(L_2\\)</span>-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides <span>\\(L_2\\)</span>-norms of <span>\\(\\nabla _\\textbf{x} u_1\\)</span> and <span>\\(\\textbf{u}_2\\)</span>, the (graph) norm of <i>U</i> contains the <span>\\(L_2\\)</span>-norm of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>. When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of <span>\\(\\textbf{u}_2\\)</span>. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions <i>u</i>. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of <span>\\(\\partial _t u_1 +{{\\,\\textrm{div}\\,}}_\\textbf{x} \\textbf{u}_2\\)</span>, i.e., of the forcing term <span>\\(f=(\\partial _t-\\Delta _x)u\\)</span>. Numerical results show significantly improved convergence rates.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"87 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved rates for a space–time FOSLS of parabolic PDEs\",\"authors\":\"Gregor Gantner, Rob Stevenson\",\"doi\":\"10.1007/s00211-023-01387-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components <span>\\\\((u_1,\\\\textbf{u}_2)=(u,-\\\\nabla _\\\\textbf{x} u)\\\\)</span>. The corresponding operator is boundedly invertible between a Hilbert space <i>U</i> and a Cartesian product of <span>\\\\(L_2\\\\)</span>-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides <span>\\\\(L_2\\\\)</span>-norms of <span>\\\\(\\\\nabla _\\\\textbf{x} u_1\\\\)</span> and <span>\\\\(\\\\textbf{u}_2\\\\)</span>, the (graph) norm of <i>U</i> contains the <span>\\\\(L_2\\\\)</span>-norm of <span>\\\\(\\\\partial _t u_1 +{{\\\\,\\\\textrm{div}\\\\,}}_\\\\textbf{x} \\\\textbf{u}_2\\\\)</span>. When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of <span>\\\\(\\\\textbf{u}_2\\\\)</span>. In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions <i>u</i>. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of <span>\\\\(\\\\partial _t u_1 +{{\\\\,\\\\textrm{div}\\\\,}}_\\\\textbf{x} \\\\textbf{u}_2\\\\)</span>, i.e., of the forcing term <span>\\\\(f=(\\\\partial _t-\\\\Delta _x)u\\\\)</span>. Numerical results show significantly improved convergence rates.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"87 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-023-01387-3\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-023-01387-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
我们考虑 Bochev 和 Gunzburger 引入的热方程一阶系统时空表述(见 Bochev 和 Gunzburger(编)《应用数学科学》第 166 卷,施普林格出版社,纽约,2009 年),以及 Führer 和 Karkulik 对其进行的分析(《计算数学应用》,纽约,2009 年):Führer and Karkulik (Comput Math Appl 92:27-36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283-299 2021) 对其进行了分析,其解分量为 \((u_1,\textbf{u}_2)=(u,-\nabla _textbf{x} u)\)。相应的算子在希尔伯特空间 U 和 \(L_2\)-type 空间的笛卡尔乘积之间是有界可逆的,这便于一阶系统最小二乘(FOSLS)离散化。除了\(\nabla _\textbf{x} u_1\) 和\(\textbf{u}_2\)的\(L_2\)-规范外,U的(图)规范还包含\(\partial _t u_1 +{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\)的\(L_2\)-规范。当应用标准有限元对时空圆柱体进行简分时,对后一种规范的近似误差估计需要 \(\textbf{u}_2\) 的高阶平稳性。在均匀分区和自适应细化分区的实验中,非光滑解 u 的收敛率低得令人失望。它们带有一个准内插值,该准内插值满足近似换向图的意义,即除了一些无害项之外,上述误差完全取决于 \(\partial _t u_1 +{{\textrm{div}\,}}_\textbf{x} \textbf{u}_2/)的光滑度,即强制项 \(f=(\partial _t-\Delta _x)u/)的光滑度。数值结果表明收敛速度明显提高。
Improved rates for a space–time FOSLS of parabolic PDEs
We consider the first-order system space–time formulation of the heat equation introduced by Bochev and Gunzburger (in: Bochev and Gunzburger (eds) Applied mathematical sciences, vol 166, Springer, New York, 2009), and analyzed by Führer and Karkulik (Comput Math Appl 92:27–36, 2021) and Gantner and Stevenson (ESAIM Math Model Numer Anal 55(1):283–299 2021), with solution components \((u_1,\textbf{u}_2)=(u,-\nabla _\textbf{x} u)\). The corresponding operator is boundedly invertible between a Hilbert space U and a Cartesian product of \(L_2\)-type spaces, which facilitates easy first-order system least-squares (FOSLS) discretizations. Besides \(L_2\)-norms of \(\nabla _\textbf{x} u_1\) and \(\textbf{u}_2\), the (graph) norm of U contains the \(L_2\)-norm of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\). When applying standard finite elements w.r.t. simplicial partitions of the space–time cylinder, estimates of the approximation error w.r.t. the latter norm require higher-order smoothness of \(\textbf{u}_2\). In experiments for both uniform and adaptively refined partitions, this manifested itself in disappointingly low convergence rates for non-smooth solutions u. In this paper, we construct finite element spaces w.r.t. prismatic partitions. They come with a quasi-interpolant that satisfies a near commuting diagram in the sense that, apart from some harmless term, the aforementioned error depends exclusively on the smoothness of \(\partial _t u_1 +{{\,\textrm{div}\,}}_\textbf{x} \textbf{u}_2\), i.e., of the forcing term \(f=(\partial _t-\Delta _x)u\). Numerical results show significantly improved convergence rates.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing