Gözde Koçak Mutlu, Ali Kara, Nalan Tekin, Sibel Demirel
{"title":"1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 聚合物颗粒的合成与表征以及活性橙 16 染料的吸附和光催化脱色应用","authors":"Gözde Koçak Mutlu, Ali Kara, Nalan Tekin, Sibel Demirel","doi":"10.1007/s00396-023-05213-y","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorption and photocatalytic decolorization methods were used to remove Reactive Orange 16 dye from textile wastewater by using ethyleneglycoldimethacrylate and 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO<sub>2</sub> polymer composite particles with magnetic synthesized by suspension polymerization. The characterization of the synthesized m-poly(EGDMA-VTA)-TiO<sub>2</sub> particules were carried out by using XRD, FTIR, SEM–EDS-elemental mapping, ESR, and BET analyses. Both adsorption and photocatalytic decolorization processes of RO16 dye were applied to the polymer particles. The effects of solution pH, amount of adsorbent, initial dye concentration, temperature, and time on the adsorption capacity were investigated. The removal of R016 dye reached a maximum at pH 3. Dye substance removal decreased due to increasing temperature and adsorbent amount. As a result of experimental studies, the adsorption of RO16 dye was explained by the Langmuir isotherm, while its kinetics was stated by a pseudo-second-order mechanism. Additionally, thermodynamic functions (ΔH<sup>o</sup>, ΔG<sup>o</sup>, and ΔS<sup>o</sup>) have been determined. At the end of adsorption, the decolorization kinetics were elucidated by examining the adsorbent amount, time, and dye concentration parameters for the photocatalytic decolorization of non-adsorbed dyes. It was determined that the photocatalytic activity was highest at low dye concentration and high photocatalyst content. Additionally, it was determined that decolorization kinetics studies were compatible with the Langmuir–Hinshelwood model.</p></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization\",\"authors\":\"Gözde Koçak Mutlu, Ali Kara, Nalan Tekin, Sibel Demirel\",\"doi\":\"10.1007/s00396-023-05213-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adsorption and photocatalytic decolorization methods were used to remove Reactive Orange 16 dye from textile wastewater by using ethyleneglycoldimethacrylate and 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO<sub>2</sub> polymer composite particles with magnetic synthesized by suspension polymerization. The characterization of the synthesized m-poly(EGDMA-VTA)-TiO<sub>2</sub> particules were carried out by using XRD, FTIR, SEM–EDS-elemental mapping, ESR, and BET analyses. Both adsorption and photocatalytic decolorization processes of RO16 dye were applied to the polymer particles. The effects of solution pH, amount of adsorbent, initial dye concentration, temperature, and time on the adsorption capacity were investigated. The removal of R016 dye reached a maximum at pH 3. Dye substance removal decreased due to increasing temperature and adsorbent amount. As a result of experimental studies, the adsorption of RO16 dye was explained by the Langmuir isotherm, while its kinetics was stated by a pseudo-second-order mechanism. Additionally, thermodynamic functions (ΔH<sup>o</sup>, ΔG<sup>o</sup>, and ΔS<sup>o</sup>) have been determined. At the end of adsorption, the decolorization kinetics were elucidated by examining the adsorbent amount, time, and dye concentration parameters for the photocatalytic decolorization of non-adsorbed dyes. It was determined that the photocatalytic activity was highest at low dye concentration and high photocatalyst content. Additionally, it was determined that decolorization kinetics studies were compatible with the Langmuir–Hinshelwood model.</p></div>\",\"PeriodicalId\":520,\"journal\":{\"name\":\"Colloid and Polymer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid and Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00396-023-05213-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-023-05213-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Synthesis and characterization of 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles and the using of Reactive Orange 16 dye in adsorption and photocatalytic decolorization
Adsorption and photocatalytic decolorization methods were used to remove Reactive Orange 16 dye from textile wastewater by using ethyleneglycoldimethacrylate and 1-vinyl-1,2,4-triazole, m-poly(EGDMA-VTA)-TiO2 polymer composite particles with magnetic synthesized by suspension polymerization. The characterization of the synthesized m-poly(EGDMA-VTA)-TiO2 particules were carried out by using XRD, FTIR, SEM–EDS-elemental mapping, ESR, and BET analyses. Both adsorption and photocatalytic decolorization processes of RO16 dye were applied to the polymer particles. The effects of solution pH, amount of adsorbent, initial dye concentration, temperature, and time on the adsorption capacity were investigated. The removal of R016 dye reached a maximum at pH 3. Dye substance removal decreased due to increasing temperature and adsorbent amount. As a result of experimental studies, the adsorption of RO16 dye was explained by the Langmuir isotherm, while its kinetics was stated by a pseudo-second-order mechanism. Additionally, thermodynamic functions (ΔHo, ΔGo, and ΔSo) have been determined. At the end of adsorption, the decolorization kinetics were elucidated by examining the adsorbent amount, time, and dye concentration parameters for the photocatalytic decolorization of non-adsorbed dyes. It was determined that the photocatalytic activity was highest at low dye concentration and high photocatalyst content. Additionally, it was determined that decolorization kinetics studies were compatible with the Langmuir–Hinshelwood model.
期刊介绍:
Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.