利用计算机视觉和机械模拟分析竹秆结构

IF 2.2 3区 农林科学 Q2 FORESTRY Holzforschung Pub Date : 2023-12-27 DOI:10.1515/hf-2023-0093
Fukuan Dai, Yuxuan Chen, Wenfu Zhang, Tuhua Zhong, Genlin Tian, Hankun Wang
{"title":"利用计算机视觉和机械模拟分析竹秆结构","authors":"Fukuan Dai, Yuxuan Chen, Wenfu Zhang, Tuhua Zhong, Genlin Tian, Hankun Wang","doi":"10.1515/hf-2023-0093","DOIUrl":null,"url":null,"abstract":"Bamboo culm is a natural material characterized by a graded structure of vascular bundles in the radial direction and a regular distribution of bamboo nodes in the axial direction. To investigate the adaptation of bamboo culm structure to its natural environment, the bamboo culm structure was analyzed using a vascular bundle identification model, complemented by mechanical simulations. The results showed a certain pattern in the macroscopic dimensional characteristics of bamboo from the base to the top: the outer diameter decreased linearly; the internode length initially increased before decreasing; the length-to-diameter ratio gradually increased; and the wall-to-cavity ratio initially decreased before increasing. In response to external forces, bamboo exhibited strong stability, which was attributed to the thin and hollow wall as well as parabolic distribution of bamboo nodes. Along the axial direction, vascular bundle numbers linearly decreased, while the ratio of fiber sheath tissue and the distribution frequency of vascular bundles increased from the base to the top. In the radial direction, the length and area of vascular bundles tended to increase before decreasing, while the width tended to increase, leading to a decreasing length-to-width ratio. Overall, the radial variation pattern of vascular bundles showed nonsignificant variations at different heights.","PeriodicalId":13083,"journal":{"name":"Holzforschung","volume":"18 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing the structure of bamboo culms using computer vision and mechanical simulation\",\"authors\":\"Fukuan Dai, Yuxuan Chen, Wenfu Zhang, Tuhua Zhong, Genlin Tian, Hankun Wang\",\"doi\":\"10.1515/hf-2023-0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bamboo culm is a natural material characterized by a graded structure of vascular bundles in the radial direction and a regular distribution of bamboo nodes in the axial direction. To investigate the adaptation of bamboo culm structure to its natural environment, the bamboo culm structure was analyzed using a vascular bundle identification model, complemented by mechanical simulations. The results showed a certain pattern in the macroscopic dimensional characteristics of bamboo from the base to the top: the outer diameter decreased linearly; the internode length initially increased before decreasing; the length-to-diameter ratio gradually increased; and the wall-to-cavity ratio initially decreased before increasing. In response to external forces, bamboo exhibited strong stability, which was attributed to the thin and hollow wall as well as parabolic distribution of bamboo nodes. Along the axial direction, vascular bundle numbers linearly decreased, while the ratio of fiber sheath tissue and the distribution frequency of vascular bundles increased from the base to the top. In the radial direction, the length and area of vascular bundles tended to increase before decreasing, while the width tended to increase, leading to a decreasing length-to-width ratio. Overall, the radial variation pattern of vascular bundles showed nonsignificant variations at different heights.\",\"PeriodicalId\":13083,\"journal\":{\"name\":\"Holzforschung\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Holzforschung\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1515/hf-2023-0093\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FORESTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Holzforschung","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1515/hf-2023-0093","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0

摘要

竹秆是一种天然材料,其径向维管束结构分级,轴向竹节分布规则。为了研究竹秆结构对自然环境的适应性,我们利用维管束识别模型对竹秆结构进行了分析,并辅以力学模拟。结果表明,竹子从基部到顶部的宏观尺寸特征有一定的规律:外径线性减小;节间长度先增加后减小;长径比逐渐增大;壁腔比先减小后增大。在外力作用下,竹子表现出很强的稳定性,这与竹壁薄且中空以及竹节呈抛物线分布有关。沿轴向,维管束数量呈线性减少,而纤维鞘组织比率和维管束分布频率则从基部向顶部增加。在径向上,维管束的长度和面积呈先增加后减少的趋势,而宽度则呈增加的趋势,导致长宽比减小。总体而言,维管束的径向变化规律在不同高度上表现出不明显的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analyzing the structure of bamboo culms using computer vision and mechanical simulation
Bamboo culm is a natural material characterized by a graded structure of vascular bundles in the radial direction and a regular distribution of bamboo nodes in the axial direction. To investigate the adaptation of bamboo culm structure to its natural environment, the bamboo culm structure was analyzed using a vascular bundle identification model, complemented by mechanical simulations. The results showed a certain pattern in the macroscopic dimensional characteristics of bamboo from the base to the top: the outer diameter decreased linearly; the internode length initially increased before decreasing; the length-to-diameter ratio gradually increased; and the wall-to-cavity ratio initially decreased before increasing. In response to external forces, bamboo exhibited strong stability, which was attributed to the thin and hollow wall as well as parabolic distribution of bamboo nodes. Along the axial direction, vascular bundle numbers linearly decreased, while the ratio of fiber sheath tissue and the distribution frequency of vascular bundles increased from the base to the top. In the radial direction, the length and area of vascular bundles tended to increase before decreasing, while the width tended to increase, leading to a decreasing length-to-width ratio. Overall, the radial variation pattern of vascular bundles showed nonsignificant variations at different heights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Holzforschung
Holzforschung 工程技术-材料科学:纸与木材
CiteScore
4.60
自引率
4.20%
发文量
83
审稿时长
3.3 months
期刊介绍: Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research. The German title reflects the journal''s origins in a long scientific tradition, but all articles are published in English to stimulate and promote cooperation between experts all over the world. Ahead-of-print publishing ensures fastest possible knowledge transfer.
期刊最新文献
Degradation of Pinus sylvestris and Populus tremula by laccate Ganoderma species Wood density and chemical composition variation of Eucalyptus urophylla clone in different environments Wood discrimination of six commonly traded Phoebe and Machilus species using high-resolution plastid and nuclear DNA barcodes Physical, vibro-mechanical and optical properties of pernambuco in relation to bow-making qualitative evaluation and wood diversity Comparative wood and charcoal anatomy of Manilkara sp.: contribution for market inspections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1