Bertrand Bessagnet, Kees Cuvelier, Alexander de Meij, Alexandra Monteiro, Enrico Pisoni, Philippe Thunis, Angelos Violaris, Jonilda Kushta, Bruce R. Denby, Qing Mu, Eivind G. Wærsted, Marta G. Vivanco, Mark R. Theobald, Victoria Gil, Ranjeet S. Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar, Elissavet Bossioli, Georgia Methymaki, Darijo Brzoja, Velimir Milić, Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut, Gino Briganti, Mihaela Mircea, Claudia Flandorfer, Kathrin Baumann-Stanzer, Virginie Hutsemékers, Elke Trimpeneers
{"title":"评估模型响应对城市排放变化的敏感性以支持减排战略","authors":"Bertrand Bessagnet, Kees Cuvelier, Alexander de Meij, Alexandra Monteiro, Enrico Pisoni, Philippe Thunis, Angelos Violaris, Jonilda Kushta, Bruce R. Denby, Qing Mu, Eivind G. Wærsted, Marta G. Vivanco, Mark R. Theobald, Victoria Gil, Ranjeet S. Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar, Elissavet Bossioli, Georgia Methymaki, Darijo Brzoja, Velimir Milić, Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut, Gino Briganti, Mihaela Mircea, Claudia Flandorfer, Kathrin Baumann-Stanzer, Virginie Hutsemékers, Elke Trimpeneers","doi":"10.1007/s11869-023-01469-z","DOIUrl":null,"url":null,"abstract":"<div><p>The sensitivity of air quality model responses to modifications in input data (e.g. emissions, meteorology and boundary conditions) or model configurations is recognized as an important issue for air quality modelling applications in support of air quality plans. In the framework of FAIRMODE (Forum of Air Quality Modelling in Europe, https://fairmode.jrc.ec.europa.eu/) a dedicated air quality modelling exercise has been designed to address this issue. The main goal was to evaluate the magnitude and variability of air quality model responses when studying emission scenarios/projections by assessing the changes of model output in response to emission changes. This work is based on several air quality models that are used to support model users and developers, and, consequently, policy makers. We present the FAIRMODE exercise and the participating models, and provide an analysis of the variability of O<sub>3</sub> and PM concentrations due to emission reduction scenarios. The key novel feature, in comparison with other exercises, is that emission reduction strategies in the present work are applied and evaluated at urban scale over a large number of cities using new indicators such as the absolute potential, the relative potential and the absolute potency. The results show that there is a larger variability of concentration changes between models, when the emission reduction scenarios are applied, than for their respective baseline absolute concentrations. For ozone, the variability between models of absolute baseline concentrations is below 10%, while the variability of concentration changes (when emissions are similarly perturbed) exceeds, in some instances 100% or higher during episodes. Combined emission reductions are usually more efficient than the sum of single precursor emission reductions both for O<sub>3</sub> and PM. In particular for ozone, model responses, in terms of linearity and additivity, show a clear impact of non-linear chemistry processes. This analysis gives an insight into the impact of model’ sensitivity to emission reductions that may be considered when designing air quality plans and paves the way of more in-depth analysis to disentangle the role of emissions from model formulation for present and future air quality assessments.</p></div>","PeriodicalId":49109,"journal":{"name":"Air Quality Atmosphere and Health","volume":"17 4","pages":"681 - 706"},"PeriodicalIF":2.9000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11869-023-01469-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessment of the sensitivity of model responses to urban emission changes in support of emission reduction strategies\",\"authors\":\"Bertrand Bessagnet, Kees Cuvelier, Alexander de Meij, Alexandra Monteiro, Enrico Pisoni, Philippe Thunis, Angelos Violaris, Jonilda Kushta, Bruce R. Denby, Qing Mu, Eivind G. Wærsted, Marta G. Vivanco, Mark R. Theobald, Victoria Gil, Ranjeet S. Sokhi, Kester Momoh, Ummugulsum Alyuz, Rajasree VPM, Saurabh Kumar, Elissavet Bossioli, Georgia Methymaki, Darijo Brzoja, Velimir Milić, Arineh Cholakian, Romain Pennel, Sylvain Mailler, Laurent Menut, Gino Briganti, Mihaela Mircea, Claudia Flandorfer, Kathrin Baumann-Stanzer, Virginie Hutsemékers, Elke Trimpeneers\",\"doi\":\"10.1007/s11869-023-01469-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The sensitivity of air quality model responses to modifications in input data (e.g. emissions, meteorology and boundary conditions) or model configurations is recognized as an important issue for air quality modelling applications in support of air quality plans. In the framework of FAIRMODE (Forum of Air Quality Modelling in Europe, https://fairmode.jrc.ec.europa.eu/) a dedicated air quality modelling exercise has been designed to address this issue. The main goal was to evaluate the magnitude and variability of air quality model responses when studying emission scenarios/projections by assessing the changes of model output in response to emission changes. This work is based on several air quality models that are used to support model users and developers, and, consequently, policy makers. We present the FAIRMODE exercise and the participating models, and provide an analysis of the variability of O<sub>3</sub> and PM concentrations due to emission reduction scenarios. The key novel feature, in comparison with other exercises, is that emission reduction strategies in the present work are applied and evaluated at urban scale over a large number of cities using new indicators such as the absolute potential, the relative potential and the absolute potency. The results show that there is a larger variability of concentration changes between models, when the emission reduction scenarios are applied, than for their respective baseline absolute concentrations. For ozone, the variability between models of absolute baseline concentrations is below 10%, while the variability of concentration changes (when emissions are similarly perturbed) exceeds, in some instances 100% or higher during episodes. Combined emission reductions are usually more efficient than the sum of single precursor emission reductions both for O<sub>3</sub> and PM. In particular for ozone, model responses, in terms of linearity and additivity, show a clear impact of non-linear chemistry processes. This analysis gives an insight into the impact of model’ sensitivity to emission reductions that may be considered when designing air quality plans and paves the way of more in-depth analysis to disentangle the role of emissions from model formulation for present and future air quality assessments.</p></div>\",\"PeriodicalId\":49109,\"journal\":{\"name\":\"Air Quality Atmosphere and Health\",\"volume\":\"17 4\",\"pages\":\"681 - 706\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11869-023-01469-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Air Quality Atmosphere and Health\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11869-023-01469-z\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Air Quality Atmosphere and Health","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s11869-023-01469-z","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessment of the sensitivity of model responses to urban emission changes in support of emission reduction strategies
The sensitivity of air quality model responses to modifications in input data (e.g. emissions, meteorology and boundary conditions) or model configurations is recognized as an important issue for air quality modelling applications in support of air quality plans. In the framework of FAIRMODE (Forum of Air Quality Modelling in Europe, https://fairmode.jrc.ec.europa.eu/) a dedicated air quality modelling exercise has been designed to address this issue. The main goal was to evaluate the magnitude and variability of air quality model responses when studying emission scenarios/projections by assessing the changes of model output in response to emission changes. This work is based on several air quality models that are used to support model users and developers, and, consequently, policy makers. We present the FAIRMODE exercise and the participating models, and provide an analysis of the variability of O3 and PM concentrations due to emission reduction scenarios. The key novel feature, in comparison with other exercises, is that emission reduction strategies in the present work are applied and evaluated at urban scale over a large number of cities using new indicators such as the absolute potential, the relative potential and the absolute potency. The results show that there is a larger variability of concentration changes between models, when the emission reduction scenarios are applied, than for their respective baseline absolute concentrations. For ozone, the variability between models of absolute baseline concentrations is below 10%, while the variability of concentration changes (when emissions are similarly perturbed) exceeds, in some instances 100% or higher during episodes. Combined emission reductions are usually more efficient than the sum of single precursor emission reductions both for O3 and PM. In particular for ozone, model responses, in terms of linearity and additivity, show a clear impact of non-linear chemistry processes. This analysis gives an insight into the impact of model’ sensitivity to emission reductions that may be considered when designing air quality plans and paves the way of more in-depth analysis to disentangle the role of emissions from model formulation for present and future air quality assessments.
期刊介绍:
Air Quality, Atmosphere, and Health is a multidisciplinary journal which, by its very name, illustrates the broad range of work it publishes and which focuses on atmospheric consequences of human activities and their implications for human and ecological health.
It offers research papers, critical literature reviews and commentaries, as well as special issues devoted to topical subjects or themes.
International in scope, the journal presents papers that inform and stimulate a global readership, as the topic addressed are global in their import. Consequently, we do not encourage submission of papers involving local data that relate to local problems. Unless they demonstrate wide applicability, these are better submitted to national or regional journals.
Air Quality, Atmosphere & Health addresses such topics as acid precipitation; airborne particulate matter; air quality monitoring and management; exposure assessment; risk assessment; indoor air quality; atmospheric chemistry; atmospheric modeling and prediction; air pollution climatology; climate change and air quality; air pollution measurement; atmospheric impact assessment; forest-fire emissions; atmospheric science; greenhouse gases; health and ecological effects; clean air technology; regional and global change and satellite measurements.
This journal benefits a diverse audience of researchers, public health officials and policy makers addressing problems that call for solutions based in evidence from atmospheric and exposure assessment scientists, epidemiologists, and risk assessors. Publication in the journal affords the opportunity to reach beyond defined disciplinary niches to this broader readership.