金属间体系的簇自组织:用于自组装晶体结构 Pu31Rh20-tI204、Pu20Os12-tI32、(Pu4Co)2(Pu4)-tI28、(Ti4Ni)2(Bi4)-tI28 和 Bi4-tI8 的簇-前体 K15、K6、K5 和 K4

IF 0.8 4区 材料科学 Q4 MATERIALS SCIENCE, CERAMICS Glass Physics and Chemistry Pub Date : 2023-12-27 DOI:10.1134/S1087659623600692
V. Ya. Shevchenko, G. D. Ilyushin
{"title":"金属间体系的簇自组织:用于自组装晶体结构 Pu31Rh20-tI204、Pu20Os12-tI32、(Pu4Co)2(Pu4)-tI28、(Ti4Ni)2(Bi4)-tI28 和 Bi4-tI8 的簇-前体 K15、K6、K5 和 K4","authors":"V. Ya. Shevchenko,&nbsp;G. D. Ilyushin","doi":"10.1134/S1087659623600692","DOIUrl":null,"url":null,"abstract":"<p>Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group <i>I</i>4/<i>mcm</i> are realized: Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204: <i>a</i> = 11.076 Å, <i>c</i> = 36.933 Å, <i>V</i> = 4530.86 Å<sup>3</sup>, Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32: <i>a</i> = 10.882 Å, <i>c</i> = 5.665 Å, <i>V</i> = 670.8 Å<sup>3</sup>. (Pu<sub>4</sub>Co)<sub>2</sub> (Pu<sub>4</sub>)-<i>tI</i>28: <i>a</i> = 10.475 Å, <i>c</i> = 5.340 Å, <i>V</i> = 585.9Å<sup>3</sup>. (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4)-<i>tI</i>28: <i>a</i> = 10.554 Å, <i>c</i> = 4.814 Å, <i>V</i> = 536.2Å<sup>3</sup>, Bi<sub>4</sub>-<i>tI</i>8: <i>a</i> = 8.518 Å, <i>c</i> = 4.164 Å, <i>V</i> = 302.15 Å<sup>3</sup>. For the crystal structure of Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204, 113 variants of the cluster representation of the 3<i>D</i> atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: <i>K</i>15 = Pu@14(Rh<sub>2</sub>Pu<sub>5</sub>)<sub>2</sub> with symmetry –42<i>m</i>, double pyramids <i>K</i>10 = (Rh@Pu<sub>4</sub>)<sub>2</sub> with symmetry 4, and octahedra <i>K</i>6 = 0@8(Rh<sub>2</sub>Pu<sub>6</sub>) with symmetry <i>mmm</i> and spacers Rh. For the crystal structure of Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32, framework-forming pyramid-shaped polyhedra <i>K</i>5 = 0@OsPu<sub>4</sub> with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4), frame-forming pyramids <i>K</i>5 = 0@Ti<sub>4</sub>Ni and tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub>) are defined. For the crystal structure (Pu<sub>4</sub>Co)<sub>2</sub>(Pu<sub>4</sub>)-<i>tI</i>28, frame-forming pyramids <i>K</i>5 = 0@ Pu<sub>4</sub>Co and tetrahedra <i>K</i>4 = 0@Pu<sub>4</sub> are defined. For the crystal structure of Bi<sub>4</sub>-<i>tI</i>8, frame-forming tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub> are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.</p>","PeriodicalId":580,"journal":{"name":"Glass Physics and Chemistry","volume":"49 6","pages":"544 - 556"},"PeriodicalIF":0.8000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8\",\"authors\":\"V. Ya. Shevchenko,&nbsp;G. D. Ilyushin\",\"doi\":\"10.1134/S1087659623600692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group <i>I</i>4/<i>mcm</i> are realized: Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204: <i>a</i> = 11.076 Å, <i>c</i> = 36.933 Å, <i>V</i> = 4530.86 Å<sup>3</sup>, Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32: <i>a</i> = 10.882 Å, <i>c</i> = 5.665 Å, <i>V</i> = 670.8 Å<sup>3</sup>. (Pu<sub>4</sub>Co)<sub>2</sub> (Pu<sub>4</sub>)-<i>tI</i>28: <i>a</i> = 10.475 Å, <i>c</i> = 5.340 Å, <i>V</i> = 585.9Å<sup>3</sup>. (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4)-<i>tI</i>28: <i>a</i> = 10.554 Å, <i>c</i> = 4.814 Å, <i>V</i> = 536.2Å<sup>3</sup>, Bi<sub>4</sub>-<i>tI</i>8: <i>a</i> = 8.518 Å, <i>c</i> = 4.164 Å, <i>V</i> = 302.15 Å<sup>3</sup>. For the crystal structure of Pu<sub>31</sub>Rh<sub>20</sub>-<i>tI</i>204, 113 variants of the cluster representation of the 3<i>D</i> atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: <i>K</i>15 = Pu@14(Rh<sub>2</sub>Pu<sub>5</sub>)<sub>2</sub> with symmetry –42<i>m</i>, double pyramids <i>K</i>10 = (Rh@Pu<sub>4</sub>)<sub>2</sub> with symmetry 4, and octahedra <i>K</i>6 = 0@8(Rh<sub>2</sub>Pu<sub>6</sub>) with symmetry <i>mmm</i> and spacers Rh. For the crystal structure of Pu<sub>20</sub>Os<sub>12</sub>-<i>tI</i>32, framework-forming pyramid-shaped polyhedra <i>K</i>5 = 0@OsPu<sub>4</sub> with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti<sub>4</sub>Ni)<sub>2</sub>(Bi4), frame-forming pyramids <i>K</i>5 = 0@Ti<sub>4</sub>Ni and tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub>) are defined. For the crystal structure (Pu<sub>4</sub>Co)<sub>2</sub>(Pu<sub>4</sub>)-<i>tI</i>28, frame-forming pyramids <i>K</i>5 = 0@ Pu<sub>4</sub>Co and tetrahedra <i>K</i>4 = 0@Pu<sub>4</sub> are defined. For the crystal structure of Bi<sub>4</sub>-<i>tI</i>8, frame-forming tetrahedra <i>K</i>4 = 0@Bi<sub>4</sub> are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.</p>\",\"PeriodicalId\":580,\"journal\":{\"name\":\"Glass Physics and Chemistry\",\"volume\":\"49 6\",\"pages\":\"544 - 556\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Glass Physics and Chemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1087659623600692\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Glass Physics and Chemistry","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1087659623600692","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 利用 ToposPro 软件包,实现了空间群为 I4/mcm 的下列晶体结构的组合-拓扑分析和自组装建模:Pu31Rh20-tI204: a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, Pu20Os12-tI32: a = 10.882 Å, c = 5.665 Å, V = 670.8 Å3. (Pu4Co)2 (Pu4)-tI28: a = 10.(Ti4Ni)2(Bi4)-tI28: a = 10.554 Å, c = 4.814 Å, V = 536.2 Å3, Bi4-tI8: a = 8.518 Å, c = 4.164 Å, V = 302.15 Å3.就 Pu31Rh20-tI204 晶体结构而言,三维原子网络的簇表示法有 113 个变体,其结构单元数目如下:4(14 个变体)、5(61 个变体)和 6(38 个变体)。考虑了三种框架形成多面体参与的晶体结构自组装变体:对称性为 -42m 的 K15 = Pu@14(Rh2Pu5)2,对称性为 4 的双金字塔 K10 = (Rh@Pu4)2,对称性为 mmm 的八面体 K6 = 0@8(Rh2Pu6)和间隔物 Rh。对于 Pu20Os12-tI32 晶体结构,定义了对称性为 4 的框架形成金字塔形多面体 K5 = 0@OsPu4,以及间隔物 Pu 和 Os。对于晶体结构 (Ti4Ni)2(Bi4),定义了形成框架的金字塔形多面体 K5 = 0@Ti4Ni 和四面体 K4 = 0@Bi4)。对于 (Pu4Co)2(Pu4)-tI28 晶体结构,定义了框架形成金字塔 K5 = 0@ Pu4Co 和四面体 K4 = 0@Pu4。对于 Bi4-tI8 的晶体结构,定义了框架形成的四面体 K4 = 0@Bi4。三维结构自组装过程的对称和拓扑代码是按以下形式从簇-前驱体重建的:主链→层→框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster Self-Organization of Intermetallic Systems: Clusters-Precursors K15, K6, K5, and K4 for the Self-Assembly of Crystal Structures Pu31Rh20-tI204, Pu20Os12-tI32, (Pu4Co)2(Pu4)-tI28, (Ti4Ni)2(Bi4)-tI28, and Bi4-tI8

Using the ToposPro software package, a combinatorial-topological analysis and modeling of the self-assembly of the following crystal structures with space group I4/mcm are realized: Pu31Rh20-tI204: a = 11.076 Å, c = 36.933 Å, V = 4530.86 Å3, Pu20Os12-tI32: a = 10.882 Å, c = 5.665 Å, V = 670.8 Å3. (Pu4Co)2 (Pu4)-tI28: a = 10.475 Å, c = 5.340 Å, V = 585.9Å3. (Ti4Ni)2(Bi4)-tI28: a = 10.554 Å, c = 4.814 Å, V = 536.2Å3, Bi4-tI8: a = 8.518 Å, c = 4.164 Å, V = 302.15 Å3. For the crystal structure of Pu31Rh20-tI204, 113 variants of the cluster representation of the 3D atomic network with the following number of structural units are established: 4 (14 variants), 5 (61 variants), and 6 (38 variants). A variant of the self-assembly of the crystal structure with the participation of three types of framework-forming polyhedra is considered: K15 = Pu@14(Rh2Pu5)2 with symmetry –42m, double pyramids K10 = (Rh@Pu4)2 with symmetry 4, and octahedra K6 = 0@8(Rh2Pu6) with symmetry mmm and spacers Rh. For the crystal structure of Pu20Os12-tI32, framework-forming pyramid-shaped polyhedra K5 = 0@OsPu4 with symmetry 4, as well as spacers Pu and Os, are defined. For the crystal structure (Ti4Ni)2(Bi4), frame-forming pyramids K5 = 0@Ti4Ni and tetrahedra K4 = 0@Bi4) are defined. For the crystal structure (Pu4Co)2(Pu4)-tI28, frame-forming pyramids K5 = 0@ Pu4Co and tetrahedra K4 = 0@Pu4 are defined. For the crystal structure of Bi4-tI8, frame-forming tetrahedra K4 = 0@Bi4 are defined. The symmetric and topological code of self-assembly processes of 3D structures is reconstructed from clusters-precursors in the following form: primary chain → layer → framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Glass Physics and Chemistry
Glass Physics and Chemistry 工程技术-材料科学:硅酸盐
CiteScore
1.20
自引率
14.30%
发文量
46
审稿时长
6-12 weeks
期刊介绍: Glass Physics and Chemistry presents results of research on the inorganic and physical chemistry of glass, ceramics, nanoparticles, nanocomposites, and high-temperature oxides and coatings. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Electrical Conductivity of Na2O–B2O3–SiO2–Cr2O3 Glass System Rb3SO4F: Refinement of the Crystal Structure and Thermal Behavior Study of the Influence of An Aluminum Oxide Additive on the Physical and Chemical Properties of ZrO2 Xerogels, Powders, and Ceramics High Temperature Graphitization of Diamond during Heat Treatment in Air and in a Vacuum Thermal Expansion of a Synthetic Analog of Matteuccite NaHSO4·H2O and α-NaHSO4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1