{"title":"基于信任的人工智能控制,用于检测 5G 社交网络中的攻击者","authors":"Davinder Kaur, Suleyman Uslu, Mimoza Durresi, Arjan Durresi","doi":"10.1111/coin.12618","DOIUrl":null,"url":null,"abstract":"<p>This study introduces a comprehensive framework designed for detecting and mitigating fake and potentially threatening user communities within 5G social networks. Leveraging geo-location data, community trust dynamics, and AI-driven community detection algorithms, this framework aims to pinpoint users posing potential harm. Including an artificial control model facilitates the selection of suitable community detection algorithms, coupled with a trust-based strategy to effectively identify and filter potential attackers. A distinctive feature of this framework lies in its ability to consider attributes that prove challenging for malicious users to emulate, such as the established trust within the community, geographical location, and adaptability to diverse attack scenarios. To validate its efficacy, we illustrate the framework using synthetic social network data, demonstrating its ability to distinguish potential malicious users from trustworthy ones.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence control for trust-based detection of attackers in 5G social networks\",\"authors\":\"Davinder Kaur, Suleyman Uslu, Mimoza Durresi, Arjan Durresi\",\"doi\":\"10.1111/coin.12618\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study introduces a comprehensive framework designed for detecting and mitigating fake and potentially threatening user communities within 5G social networks. Leveraging geo-location data, community trust dynamics, and AI-driven community detection algorithms, this framework aims to pinpoint users posing potential harm. Including an artificial control model facilitates the selection of suitable community detection algorithms, coupled with a trust-based strategy to effectively identify and filter potential attackers. A distinctive feature of this framework lies in its ability to consider attributes that prove challenging for malicious users to emulate, such as the established trust within the community, geographical location, and adaptability to diverse attack scenarios. To validate its efficacy, we illustrate the framework using synthetic social network data, demonstrating its ability to distinguish potential malicious users from trustworthy ones.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12618\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12618","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Artificial intelligence control for trust-based detection of attackers in 5G social networks
This study introduces a comprehensive framework designed for detecting and mitigating fake and potentially threatening user communities within 5G social networks. Leveraging geo-location data, community trust dynamics, and AI-driven community detection algorithms, this framework aims to pinpoint users posing potential harm. Including an artificial control model facilitates the selection of suitable community detection algorithms, coupled with a trust-based strategy to effectively identify and filter potential attackers. A distinctive feature of this framework lies in its ability to consider attributes that prove challenging for malicious users to emulate, such as the established trust within the community, geographical location, and adaptability to diverse attack scenarios. To validate its efficacy, we illustrate the framework using synthetic social network data, demonstrating its ability to distinguish potential malicious users from trustworthy ones.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.