盐度、总氮和总磷的变化会诱发热带河口新生大型植物的氧化应激吗?

IF 1.7 4区 环境科学与生态学 Q3 ECOLOGY Aquatic Ecology Pub Date : 2023-12-26 DOI:10.1007/s10452-023-10079-x
Rachel Santini, Mirela Vantini Checchio, Laís Samira Correia Nunes, Priscila Lupino Gratão, Antonio Fernando Monteiro Camargo
{"title":"盐度、总氮和总磷的变化会诱发热带河口新生大型植物的氧化应激吗?","authors":"Rachel Santini,&nbsp;Mirela Vantini Checchio,&nbsp;Laís Samira Correia Nunes,&nbsp;Priscila Lupino Gratão,&nbsp;Antonio Fernando Monteiro Camargo","doi":"10.1007/s10452-023-10079-x","DOIUrl":null,"url":null,"abstract":"<div><p>Aquatic plants suffer stress caused by abiotic and biotic variables. In estuaries, salinity is one of the main abiotic factors responsible for stress. This study aimed to evaluate oxidative stress in two species of aquatic macrophytes (<i>Crinum americanum</i> and <i>Spartina alterniflora</i>) that are common in Brazilian tropical estuaries. We measured reactive oxygen species (hydrogen peroxide and malondialdehyde) and total nitrogen (TN) and total phosphorus (TP) in the aboveground and belowground biomass of the species. In addition, we measured salinity, TN, and TP content in the sediment. Statistical tests included t test and the analysis of variance (ANOVA) followed by the Tukey’s test. Our results showed that the greatest oxidative stress, in both species, occurred in areas of the estuary with lower salinity. For <i>C. americanum,</i> limitation by TN and TP content in the sediment is the main cause of oxidative stress. For <i>S. alterniflora</i>, the presence of <i>C. americanum</i> and the allelopathic compounds released by it seem to be the major cause of oxidative stress. Salinity did not induce oxidative stress in <i>C. americanum</i> and <i>S. alterniflora</i> in the estuary; however, the difference in TP and TN contents in the sediment played an important role in their responses to oxidative stress.</p></div>","PeriodicalId":8262,"journal":{"name":"Aquatic Ecology","volume":"58 2","pages":"399 - 409"},"PeriodicalIF":1.7000,"publicationDate":"2023-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Do salinity, total nitrogen and phosphorus variation induce oxidative stress in emergent macrophytes along a tropical estuary?\",\"authors\":\"Rachel Santini,&nbsp;Mirela Vantini Checchio,&nbsp;Laís Samira Correia Nunes,&nbsp;Priscila Lupino Gratão,&nbsp;Antonio Fernando Monteiro Camargo\",\"doi\":\"10.1007/s10452-023-10079-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aquatic plants suffer stress caused by abiotic and biotic variables. In estuaries, salinity is one of the main abiotic factors responsible for stress. This study aimed to evaluate oxidative stress in two species of aquatic macrophytes (<i>Crinum americanum</i> and <i>Spartina alterniflora</i>) that are common in Brazilian tropical estuaries. We measured reactive oxygen species (hydrogen peroxide and malondialdehyde) and total nitrogen (TN) and total phosphorus (TP) in the aboveground and belowground biomass of the species. In addition, we measured salinity, TN, and TP content in the sediment. Statistical tests included t test and the analysis of variance (ANOVA) followed by the Tukey’s test. Our results showed that the greatest oxidative stress, in both species, occurred in areas of the estuary with lower salinity. For <i>C. americanum,</i> limitation by TN and TP content in the sediment is the main cause of oxidative stress. For <i>S. alterniflora</i>, the presence of <i>C. americanum</i> and the allelopathic compounds released by it seem to be the major cause of oxidative stress. Salinity did not induce oxidative stress in <i>C. americanum</i> and <i>S. alterniflora</i> in the estuary; however, the difference in TP and TN contents in the sediment played an important role in their responses to oxidative stress.</p></div>\",\"PeriodicalId\":8262,\"journal\":{\"name\":\"Aquatic Ecology\",\"volume\":\"58 2\",\"pages\":\"399 - 409\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aquatic Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10452-023-10079-x\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Ecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10452-023-10079-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

水生植物会受到非生物和生物变量的胁迫。在河口,盐度是造成压力的主要非生物因素之一。本研究旨在评估巴西热带河口常见的两种水生大型植物(Crinum americanum 和 Spartina alterniflora)的氧化应激。我们测量了活性氧(过氧化氢和丙二醛)、总氮(TN)和总磷(TP)在该物种地上和地下生物量中的含量。此外,我们还测量了沉积物中的盐度、TN 和 TP 含量。统计检验包括 t 检验和方差分析(ANOVA),然后进行 Tukey 检验。结果表明,在盐度较低的河口地区,两种鱼类的氧化压力都最大。对 C. americanum 而言,沉积物中 TN 和 TP 含量的限制是氧化应激的主要原因。对于 S. alterniflora 而言,C. americanum 的存在及其释放的等效化合物似乎是氧化应激的主要原因。盐度并没有诱导河口的 C. americanum 和 S. alterniflora 产生氧化应激;然而,沉积物中 TP 和 TN 含量的差异在它们对氧化应激的反应中起了重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Do salinity, total nitrogen and phosphorus variation induce oxidative stress in emergent macrophytes along a tropical estuary?

Aquatic plants suffer stress caused by abiotic and biotic variables. In estuaries, salinity is one of the main abiotic factors responsible for stress. This study aimed to evaluate oxidative stress in two species of aquatic macrophytes (Crinum americanum and Spartina alterniflora) that are common in Brazilian tropical estuaries. We measured reactive oxygen species (hydrogen peroxide and malondialdehyde) and total nitrogen (TN) and total phosphorus (TP) in the aboveground and belowground biomass of the species. In addition, we measured salinity, TN, and TP content in the sediment. Statistical tests included t test and the analysis of variance (ANOVA) followed by the Tukey’s test. Our results showed that the greatest oxidative stress, in both species, occurred in areas of the estuary with lower salinity. For C. americanum, limitation by TN and TP content in the sediment is the main cause of oxidative stress. For S. alterniflora, the presence of C. americanum and the allelopathic compounds released by it seem to be the major cause of oxidative stress. Salinity did not induce oxidative stress in C. americanum and S. alterniflora in the estuary; however, the difference in TP and TN contents in the sediment played an important role in their responses to oxidative stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Aquatic Ecology
Aquatic Ecology 环境科学-海洋与淡水生物学
CiteScore
3.90
自引率
0.00%
发文量
68
审稿时长
3 months
期刊介绍: Aquatic Ecology publishes timely, peer-reviewed original papers relating to the ecology of fresh, brackish, estuarine and marine environments. Papers on fundamental and applied novel research in both the field and the laboratory, including descriptive or experimental studies, will be included in the journal. Preference will be given to studies that address timely and current topics and are integrative and critical in approach. We discourage papers that describe presence and abundance of aquatic biota in local habitats as well as papers that are pure systematic. The journal provides a forum for the aquatic ecologist - limnologist and oceanologist alike- to discuss ecological issues related to processes and structures at different integration levels from individuals to populations, to communities and entire ecosystems.
期刊最新文献
Bullseye: shotgun metagenomics taking aim at the microbial diversity associated with tubes of Ceriantharia Correction: Structure and dynamics of mollusk communities from intermittent rivers in Brazilian semiarid region Positive linear relationship between phytoplankton diversity and productivity in an artificial reef ecosystem A case of fish mortality caused by Prymnesium parvum in inland waters in Yucatan, Mexico Primary colonization and small-scale dynamics of non-indigenous benthic species: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1