Xiaorong Lu, Marc W. Cadotte, Pandeng Wang, Shan Rao, Xiaoye Shi, Siyuan Ren, Xihua Wang, Shao-peng Li
{"title":"要解释复杂的地上地下多样性关系,需要系统发育多样性的多个维度","authors":"Xiaorong Lu, Marc W. Cadotte, Pandeng Wang, Shan Rao, Xiaoye Shi, Siyuan Ren, Xihua Wang, Shao-peng Li","doi":"10.1111/oik.10474","DOIUrl":null,"url":null,"abstract":"The complex relationship between aboveground and belowground diversity and whether they act as surrogates for one another remains unresolved. Increasing evidence suggests that investigating phylogenetic diversity could provide valuable insights into the interplay between plants and soil microbes, but the proliferation of phylogenetic diversity metrics has hindered comparative studies and the identification of general patterns. To overcome this challenge, we implemented a multi-dimensional framework that classifies phylogenetic diversity metrics into three dimensions: richness, divergence, and regularity, each of which captures different ecological aspects of species differences. Then we applied this framework to investigate the relationship between above and belowground diversity in a subtropical forest in eastern China. We found that phylogenetic diversity of plant and soil microbes, including bacteria and fungi, were more strongly correlated at the richness and regularity dimensions compared with divergence dimension. Further analyses revealed that these observed correlation patterns align with variations in soil total phosphorus content, a key factor influencing both plant and microbial phylogenetic diversity at richness and regularity dimensions. Together, our study demonstrated the necessity of using a multi-dimensional approach to advance our understanding of the complex relationships between plant and soil microbial biodiversity.","PeriodicalId":19496,"journal":{"name":"Oikos","volume":"47 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple dimensions of phylogenetic diversity are needed to explain the complex aboveground–belowground diversity relationships\",\"authors\":\"Xiaorong Lu, Marc W. Cadotte, Pandeng Wang, Shan Rao, Xiaoye Shi, Siyuan Ren, Xihua Wang, Shao-peng Li\",\"doi\":\"10.1111/oik.10474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The complex relationship between aboveground and belowground diversity and whether they act as surrogates for one another remains unresolved. Increasing evidence suggests that investigating phylogenetic diversity could provide valuable insights into the interplay between plants and soil microbes, but the proliferation of phylogenetic diversity metrics has hindered comparative studies and the identification of general patterns. To overcome this challenge, we implemented a multi-dimensional framework that classifies phylogenetic diversity metrics into three dimensions: richness, divergence, and regularity, each of which captures different ecological aspects of species differences. Then we applied this framework to investigate the relationship between above and belowground diversity in a subtropical forest in eastern China. We found that phylogenetic diversity of plant and soil microbes, including bacteria and fungi, were more strongly correlated at the richness and regularity dimensions compared with divergence dimension. Further analyses revealed that these observed correlation patterns align with variations in soil total phosphorus content, a key factor influencing both plant and microbial phylogenetic diversity at richness and regularity dimensions. Together, our study demonstrated the necessity of using a multi-dimensional approach to advance our understanding of the complex relationships between plant and soil microbial biodiversity.\",\"PeriodicalId\":19496,\"journal\":{\"name\":\"Oikos\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oikos\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/oik.10474\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oikos","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/oik.10474","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Multiple dimensions of phylogenetic diversity are needed to explain the complex aboveground–belowground diversity relationships
The complex relationship between aboveground and belowground diversity and whether they act as surrogates for one another remains unresolved. Increasing evidence suggests that investigating phylogenetic diversity could provide valuable insights into the interplay between plants and soil microbes, but the proliferation of phylogenetic diversity metrics has hindered comparative studies and the identification of general patterns. To overcome this challenge, we implemented a multi-dimensional framework that classifies phylogenetic diversity metrics into three dimensions: richness, divergence, and regularity, each of which captures different ecological aspects of species differences. Then we applied this framework to investigate the relationship between above and belowground diversity in a subtropical forest in eastern China. We found that phylogenetic diversity of plant and soil microbes, including bacteria and fungi, were more strongly correlated at the richness and regularity dimensions compared with divergence dimension. Further analyses revealed that these observed correlation patterns align with variations in soil total phosphorus content, a key factor influencing both plant and microbial phylogenetic diversity at richness and regularity dimensions. Together, our study demonstrated the necessity of using a multi-dimensional approach to advance our understanding of the complex relationships between plant and soil microbial biodiversity.
期刊介绍:
Oikos publishes original and innovative research on all aspects of ecology, defined as organism-environment interactions at various spatiotemporal scales, so including macroecology and evolutionary ecology. Emphasis is on theoretical and empirical work aimed at generalization and synthesis across taxa, systems and ecological disciplines. Papers can contribute to new developments in ecology by reporting novel theory or critical empirical results, and "synthesis" can include developing new theory, tests of general hypotheses, or bringing together established or emerging areas of ecology. Confirming or extending the established literature, by for example showing results that are novel for a new taxon, or purely applied research, is given low priority.