Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu
{"title":"通过盐酸缩氨基脲添加剂抑制深电平陷阱,实现高性能锡基过氧化物太阳能电池。","authors":"Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu","doi":"10.1007/s12200-023-00103-1","DOIUrl":null,"url":null,"abstract":"<p><p>Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O<sub>2</sub> molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N-C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device's operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":"16 1","pages":"47"},"PeriodicalIF":4.1000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754768/pdf/","citationCount":"0","resultStr":"{\"title\":\"Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells.\",\"authors\":\"Wenbo Jia, Yi Jing, Han Zhang, Baoyan Tian, Huabo Huang, Changlei Wang, Ligang Xu\",\"doi\":\"10.1007/s12200-023-00103-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O<sub>2</sub> molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N-C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device's operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.</p>\",\"PeriodicalId\":12685,\"journal\":{\"name\":\"Frontiers of Optoelectronics\",\"volume\":\"16 1\",\"pages\":\"47\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10754768/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Optoelectronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12200-023-00103-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00103-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Suppression of deep-level traps via semicarbazide hydrochloride additives for high-performance tin-based perovskite solar cells.
Tin perovskites with exemplary optoelectronic properties offer potential application in lead-free perovskite solar cells. However, Sn vacancies and undercoordinated Sn ions on the tin perovskite surfaces can create deep-level traps, leading to non-radiative recombination and absorption of nucleophilic O2 molecules, impeding further device efficiency and stability. Here, in this study, a new additive of semicarbazide hydrochloride (SEM-HCl) with a N-C=O functional group was introduced into the perovskite precursor to fabricate high-quality films with a low concentration of deep-level trap densities. This, in turn, serves to prevent undesirable interaction between photogenerated carriers and adsorbed oxygen molecules in the device's operational environment, ultimately reducing the proliferation of superoxide entities. As the result, the SEM-HCl-derived devices show a peak efficiency of 10.9% with improved device stability. These unencapsulated devices maintain almost 100% of their initial efficiencies after working for 100 h under continuous AM1.5 illumination conditions.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more