金纳米粒子与光生物调节的联合治疗可加速皮损的愈合。

IF 4.3 4区 医学 Q1 PHARMACOLOGY & PHARMACY Journal of Drug Targeting Pub Date : 2024-12-01 Epub Date: 2024-02-01 DOI:10.1080/1061186X.2023.2298848
Daysiane de Oliveira, Gabriel Paulino Luiz, Rahisa Scussel, Mirian Ivens Fagundes, Nathália Coral Galvani, Jessica da Silva Abel, Rubya Pereira Zaccaron, Gustavo de Bem Silveira, Thiago Antônio Moretti de Andrade, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila
{"title":"金纳米粒子与光生物调节的联合治疗可加速皮损的愈合。","authors":"Daysiane de Oliveira, Gabriel Paulino Luiz, Rahisa Scussel, Mirian Ivens Fagundes, Nathália Coral Galvani, Jessica da Silva Abel, Rubya Pereira Zaccaron, Gustavo de Bem Silveira, Thiago Antônio Moretti de Andrade, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila","doi":"10.1080/1061186X.2023.2298848","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the <i>Loxosceles simillis</i>, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.<b>Methodology:</b> For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.<b>Results:</b> All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.<b>Conclusion:</b> With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.</p>","PeriodicalId":15573,"journal":{"name":"Journal of Drug Targeting","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The combined treatment of gold nanoparticles associated with photobiomodulation accelerate the healing of dermonecrotic lesion.\",\"authors\":\"Daysiane de Oliveira, Gabriel Paulino Luiz, Rahisa Scussel, Mirian Ivens Fagundes, Nathália Coral Galvani, Jessica da Silva Abel, Rubya Pereira Zaccaron, Gustavo de Bem Silveira, Thiago Antônio Moretti de Andrade, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila\",\"doi\":\"10.1080/1061186X.2023.2298848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Introduction:</b> The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the <i>Loxosceles simillis</i>, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.<b>Methodology:</b> For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.<b>Results:</b> All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.<b>Conclusion:</b> With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.</p>\",\"PeriodicalId\":15573,\"journal\":{\"name\":\"Journal of Drug Targeting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Drug Targeting\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/1061186X.2023.2298848\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Drug Targeting","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/1061186X.2023.2298848","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

简介寻找快速有效的治疗方法来治疗由蛛网膜蛛毒液引起的皮损,是健康领域的一项需求。泼尼松龙是最常用的药物之一,但它有副作用。在这种情况下,成瘾性金纳米粒子(GNPs)具有抗炎、抗氧化和抗菌特性。在组织修复过程中,光生物调节的使用已被证明是有效的。因此,本研究旨在探讨光生物调制和 GNPs 与低浓度泼尼松龙是否相关的抗炎效果:方法:对静脉诱导的兔皮损进行泼尼松龙+激光或GNPs+激光或Pred-GNPs+激光局部治疗。测量水肿、坏死和红斑的面积。在治疗的最后一天,动物被安乐死,取出器官进行组织病理学和生化分析:结果:所有治疗组合都能有效促进坏死组织和红斑的减少:根据这一结果,我们建议应考虑使用激光和纳米粒子(无论是否与强的松龙联合使用)来治疗皮损。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The combined treatment of gold nanoparticles associated with photobiomodulation accelerate the healing of dermonecrotic lesion.

Introduction: The search for fast and efficient treatment for dermonecrotic lesions caused by the venom of the spider from the Loxosceles simillis, is a demand in health. Prednisolone is one of the most used drugs, however it has side effects. In this context, addictionally gold nanoparticles (GNPs) have anti-inflammatory, antioxidant, and antibacterial properties. The use of photobiomodulation has show to be efficient in the process of tissue repair. Therefore, the purpose of this study was to investigate the anti-inflammatory effect of photobiomodulation and GNPs associated or not with a low concentration of prednisolone in animal models of dermonecrotic lesion.Methodology: For this, rabbits with venon-induced dermonecrotic lesion were subjected to topical treatment with prednisolone + laser or GNPs + laser or Pred-GNPs + laser. The area of edema, necrosis and erythema were measured. On the last day of treatment, the animals were euthanized to remove the organs for histopathological and biochemical analysis.Results: All treatments combinations were effective in promoting the reduction of necrotic tissue and erythema.Conclusion: With this results, we suggest that the use of laser and nanoparticles, associated or not with prednisolone, should be considered for the treatment of dermonecrotic injury.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
165
审稿时长
2 months
期刊介绍: Journal of Drug Targeting publishes papers and reviews on all aspects of drug delivery and targeting for molecular and macromolecular drugs including the design and characterization of carrier systems (whether colloidal, protein or polymeric) for both vitro and/or in vivo applications of these drugs. Papers are not restricted to drugs delivered by way of a carrier, but also include studies on molecular and macromolecular drugs that are designed to target specific cellular or extra-cellular molecules. As such the journal publishes results on the activity, delivery and targeting of therapeutic peptides/proteins and nucleic acids including genes/plasmid DNA, gene silencing nucleic acids (e.g. small interfering (si)RNA, antisense oligonucleotides, ribozymes, DNAzymes), as well as aptamers, mononucleotides and monoclonal antibodies and their conjugates. The diagnostic application of targeting technologies as well as targeted delivery of diagnostic and imaging agents also fall within the scope of the journal. In addition, papers are sought on self-regulating systems, systems responsive to their environment and to external stimuli and those that can produce programmed, pulsed and otherwise complex delivery patterns.
期刊最新文献
Machine learning for skin permeability prediction: random forest and XG boost regression. microRNAs: critical targets for treating rheumatoid arthritis angiogenesis. Clinical evaluation of liposome-based gel formulation containing glycolic acid for the treatment of photodamaged skin. Development of mRNA nano-vaccines for COVID-19 prevention and its biochemical interactions with various disease conditions and age groups. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1