{"title":"利用材料点法框架对基于材料挤压的三维打印过程进行数值建模和模拟","authors":"M. Erden Yildizdag","doi":"10.1007/s00161-023-01273-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a numerical framework based on the material point method is presented for the simulation of material extrusion (MEX)-based 3-D printing processes. The melt flow during material extrusion is assumed to be viscous flow including phase changes. To apply the free surface boundary conditions, the framework utilizes the level set method to track the free surface and the ghost fluid method for the application of the boundary conditions. For validation, three representative problems are first investigated to show the versatility of the model. Then, the numerical framework is adapted for the simulation of material extrusion (MEX) based 3-D printing processes. An in-depth parametric study is presented to show how printing parameters affect the overall extruded printing material.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 5","pages":"1361 - 1378"},"PeriodicalIF":1.9000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical modeling and simulation of material extrusion-based 3-D printing processes with a material point method framework\",\"authors\":\"M. Erden Yildizdag\",\"doi\":\"10.1007/s00161-023-01273-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a numerical framework based on the material point method is presented for the simulation of material extrusion (MEX)-based 3-D printing processes. The melt flow during material extrusion is assumed to be viscous flow including phase changes. To apply the free surface boundary conditions, the framework utilizes the level set method to track the free surface and the ghost fluid method for the application of the boundary conditions. For validation, three representative problems are first investigated to show the versatility of the model. Then, the numerical framework is adapted for the simulation of material extrusion (MEX) based 3-D printing processes. An in-depth parametric study is presented to show how printing parameters affect the overall extruded printing material.</p></div>\",\"PeriodicalId\":525,\"journal\":{\"name\":\"Continuum Mechanics and Thermodynamics\",\"volume\":\"36 5\",\"pages\":\"1361 - 1378\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Continuum Mechanics and Thermodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00161-023-01273-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-023-01273-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Numerical modeling and simulation of material extrusion-based 3-D printing processes with a material point method framework
In this study, a numerical framework based on the material point method is presented for the simulation of material extrusion (MEX)-based 3-D printing processes. The melt flow during material extrusion is assumed to be viscous flow including phase changes. To apply the free surface boundary conditions, the framework utilizes the level set method to track the free surface and the ghost fluid method for the application of the boundary conditions. For validation, three representative problems are first investigated to show the versatility of the model. Then, the numerical framework is adapted for the simulation of material extrusion (MEX) based 3-D printing processes. An in-depth parametric study is presented to show how printing parameters affect the overall extruded printing material.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.