Sander De Rouck, Antonio Mocchetti, Wannes Dermauw, Thomas Van Leeuwen
{"title":"SYNCAS:对难以转化的节肢动物进行高效的 CRISPR/Cas9 基因编辑","authors":"Sander De Rouck, Antonio Mocchetti, Wannes Dermauw, Thomas Van Leeuwen","doi":"10.1016/j.ibmb.2023.104068","DOIUrl":null,"url":null,"abstract":"<div><p>The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, <em>Tetranychus urticae</em>, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for <em>T. urticae.</em> We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different <em>T. urticae</em> genes – <em>phytoene desaturase, CYP384A1</em> and <em>Antennapedia</em> – but also allowed to develop a co-CRISPR strategy and facilitated the generation of <em>T. urticae</em> knock-in mutants. In addition, SYNCAS was successfully applied to knock-out <em>white</em> and <em>white-like</em> genes in the western flower thrips, <em>Frankliniella occidentalis</em>. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.</p></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"165 ","pages":"Article 104068"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0965174823001625/pdfft?md5=74c32502c71284a2abb7e408e6232986&pid=1-s2.0-S0965174823001625-main.pdf","citationCount":"0","resultStr":"{\"title\":\"SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods\",\"authors\":\"Sander De Rouck, Antonio Mocchetti, Wannes Dermauw, Thomas Van Leeuwen\",\"doi\":\"10.1016/j.ibmb.2023.104068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, <em>Tetranychus urticae</em>, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for <em>T. urticae.</em> We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different <em>T. urticae</em> genes – <em>phytoene desaturase, CYP384A1</em> and <em>Antennapedia</em> – but also allowed to develop a co-CRISPR strategy and facilitated the generation of <em>T. urticae</em> knock-in mutants. In addition, SYNCAS was successfully applied to knock-out <em>white</em> and <em>white-like</em> genes in the western flower thrips, <em>Frankliniella occidentalis</em>. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.</p></div>\",\"PeriodicalId\":330,\"journal\":{\"name\":\"Insect Biochemistry and Molecular Biology\",\"volume\":\"165 \",\"pages\":\"Article 104068\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0965174823001625/pdfft?md5=74c32502c71284a2abb7e408e6232986&pid=1-s2.0-S0965174823001625-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Biochemistry and Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0965174823001625\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174823001625","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
SYNCAS: Efficient CRISPR/Cas9 gene-editing in difficult to transform arthropods
The genome editing technique CRISPR/Cas9 has led to major advancements in many research fields and this state-of-the-art tool has proven its use in genetic studies for various arthropods. However, most transformation protocols rely on microinjection of CRISPR/Cas9 components into embryos, a method which is challenging for many species. Alternatively, injections can be performed on adult females, but transformation efficiencies can be very low as was shown for the two-spotted spider mite, Tetranychus urticae, a minute but important chelicerate pest on many crops. In this study, we explored different CRISPR/Cas9 formulations to optimize a maternal injection protocol for T. urticae. We observed a strong synergy between branched amphipathic peptide capsules and saponins, resulting in a significant increase of CRISPR/Cas9 knock-out efficiency, exceeding 20%. This CRISPR/Cas9 formulation, termed SYNCAS, was used to knock-out different T. urticae genes – phytoene desaturase, CYP384A1 and Antennapedia – but also allowed to develop a co-CRISPR strategy and facilitated the generation of T. urticae knock-in mutants. In addition, SYNCAS was successfully applied to knock-out white and white-like genes in the western flower thrips, Frankliniella occidentalis. The SYNCAS method allows routine genome editing in these species and can be a game changer for genetic research in other hard to transform arthropods.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.