Larissa A. Klok, Teresa T. Steffen, Henrique R. Sabedra, Luis C. Fontana, Peter Hammer, Felippe M. Marega, Lidiane C. Costa, Luiz A. Pessan, Daniela Becker
{"title":"利用等离子处理法用马来酸酐修饰氧化锌表面","authors":"Larissa A. Klok, Teresa T. Steffen, Henrique R. Sabedra, Luis C. Fontana, Peter Hammer, Felippe M. Marega, Lidiane C. Costa, Luiz A. Pessan, Daniela Becker","doi":"10.1002/ppap.202300165","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) was surface treated using argon plasma at 5 and 15 min, using maleic anhydride (MA) in solid state as the functionalizing agent. The samples were characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results indicate that ZnO surface modification occurs through two main routes: the decomposition of MA and the plasma-induced formation of C–Zn bonds, with 15 min being the most favorable time span. Poly(lactic acid) (PLA) and ZnO were processed in an internal chamber mixer, which was coupled with a torque rheometer and characterized by the Melt Flow Index. Composites containing treated ZnO present fluidity indices closer to those of pure PLA, indicating the functionalization contribution to control the degradation of the polymer matrix.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"94 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ZnO surface modification with maleic anhydride using plasma treatment\",\"authors\":\"Larissa A. Klok, Teresa T. Steffen, Henrique R. Sabedra, Luis C. Fontana, Peter Hammer, Felippe M. Marega, Lidiane C. Costa, Luiz A. Pessan, Daniela Becker\",\"doi\":\"10.1002/ppap.202300165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zinc oxide (ZnO) was surface treated using argon plasma at 5 and 15 min, using maleic anhydride (MA) in solid state as the functionalizing agent. The samples were characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results indicate that ZnO surface modification occurs through two main routes: the decomposition of MA and the plasma-induced formation of C–Zn bonds, with 15 min being the most favorable time span. Poly(lactic acid) (PLA) and ZnO were processed in an internal chamber mixer, which was coupled with a torque rheometer and characterized by the Melt Flow Index. Composites containing treated ZnO present fluidity indices closer to those of pure PLA, indicating the functionalization contribution to control the degradation of the polymer matrix.\",\"PeriodicalId\":20135,\"journal\":{\"name\":\"Plasma Processes and Polymers\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Processes and Polymers\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1002/ppap.202300165\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202300165","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
ZnO surface modification with maleic anhydride using plasma treatment
Zinc oxide (ZnO) was surface treated using argon plasma at 5 and 15 min, using maleic anhydride (MA) in solid state as the functionalizing agent. The samples were characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The results indicate that ZnO surface modification occurs through two main routes: the decomposition of MA and the plasma-induced formation of C–Zn bonds, with 15 min being the most favorable time span. Poly(lactic acid) (PLA) and ZnO were processed in an internal chamber mixer, which was coupled with a torque rheometer and characterized by the Melt Flow Index. Composites containing treated ZnO present fluidity indices closer to those of pure PLA, indicating the functionalization contribution to control the degradation of the polymer matrix.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.