{"title":"利用 U-Net 预测不可逆电穿孔过程中的热损伤图","authors":"Amir Khorasani","doi":"10.1080/15368378.2023.2299212","DOIUrl":null,"url":null,"abstract":"Recent developments in cancer treatment with irreversible electroporation (IRE) have led to a renewed interest in developing a treatment planning system based on Deep-Learning methods. This paper w...","PeriodicalId":50544,"journal":{"name":"Electromagnetic Biology and Medicine","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal damage map prediction during irreversible electroporation with U-Net\",\"authors\":\"Amir Khorasani\",\"doi\":\"10.1080/15368378.2023.2299212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent developments in cancer treatment with irreversible electroporation (IRE) have led to a renewed interest in developing a treatment planning system based on Deep-Learning methods. This paper w...\",\"PeriodicalId\":50544,\"journal\":{\"name\":\"Electromagnetic Biology and Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electromagnetic Biology and Medicine\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15368378.2023.2299212\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electromagnetic Biology and Medicine","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15368378.2023.2299212","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Thermal damage map prediction during irreversible electroporation with U-Net
Recent developments in cancer treatment with irreversible electroporation (IRE) have led to a renewed interest in developing a treatment planning system based on Deep-Learning methods. This paper w...
期刊介绍:
Aims & Scope: Electromagnetic Biology and Medicine, publishes peer-reviewed research articles on the biological effects and medical applications of non-ionizing electromagnetic fields (from extremely-low frequency to radiofrequency). Topic examples include in vitro and in vivo studies, epidemiological investigation, mechanism and mode of interaction between non-ionizing electromagnetic fields and biological systems. In addition to publishing original articles, the journal also publishes meeting summaries and reports, and reviews on selected topics.