开发用于原位光谱表征的紧凑型激光加热台

IF 1.6 4区 化学 Q4 CHEMISTRY, PHYSICAL Surface and Interface Analysis Pub Date : 2023-12-27 DOI:10.1002/sia.7278
Claudiu Colbea, Milivoj Plodinec, Marc Willinger, Jeroen A. van Bokhoven, Luca Artiglia
{"title":"开发用于原位光谱表征的紧凑型激光加热台","authors":"Claudiu Colbea, Milivoj Plodinec, Marc Willinger, Jeroen A. van Bokhoven, Luca Artiglia","doi":"10.1002/sia.7278","DOIUrl":null,"url":null,"abstract":"In this work, we present a recent advancement in high-temperature instrumentation in the form of a heating stage that enables studies to be performed in the temperature range of 20–1250°C under high-vacuum, millibar, and atmospheric pressure conditions (10<sup>−7</sup>–1000 mbar). The newly developed laser-based heating solution is described in detail. Its functionality is highlighted in this study in the form of a heating stage compatible with in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The proof-of-concept experiment presented in this work involves a polycrystalline nickel foil, a material of considerable interest in the scientific field due to its applications in catalysis, batteries, and electrochemistry. Owing to the intrinsic oxophilicity of nickel, the experiment targeted the high-temperature oxidation (600°C) and reduction (1050°C) that serves interest as both, a pretreatment and preparation method, and as a model reaction for the redox behavior of non-noble materials under reactive conditions. Complete and reversible surface state changes from metallic to oxide and back to metallic were achieved through stepwise variations of the gas phase composition and temperature. The heating stage showed high stability at high temperatures under reducing and oxidizing conditions, demonstrating the benefit of this design. The in situ characterization possibilities enabled by this stage will allow a better understanding of the inherent properties of materials that function at high temperatures, leading to their optimization in relevant application fields such as catalysis, materials, and surface science.","PeriodicalId":22062,"journal":{"name":"Surface and Interface Analysis","volume":"11 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a compact laser-based heating stage for in situ spectroscopic characterizations\",\"authors\":\"Claudiu Colbea, Milivoj Plodinec, Marc Willinger, Jeroen A. van Bokhoven, Luca Artiglia\",\"doi\":\"10.1002/sia.7278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we present a recent advancement in high-temperature instrumentation in the form of a heating stage that enables studies to be performed in the temperature range of 20–1250°C under high-vacuum, millibar, and atmospheric pressure conditions (10<sup>−7</sup>–1000 mbar). The newly developed laser-based heating solution is described in detail. Its functionality is highlighted in this study in the form of a heating stage compatible with in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The proof-of-concept experiment presented in this work involves a polycrystalline nickel foil, a material of considerable interest in the scientific field due to its applications in catalysis, batteries, and electrochemistry. Owing to the intrinsic oxophilicity of nickel, the experiment targeted the high-temperature oxidation (600°C) and reduction (1050°C) that serves interest as both, a pretreatment and preparation method, and as a model reaction for the redox behavior of non-noble materials under reactive conditions. Complete and reversible surface state changes from metallic to oxide and back to metallic were achieved through stepwise variations of the gas phase composition and temperature. The heating stage showed high stability at high temperatures under reducing and oxidizing conditions, demonstrating the benefit of this design. The in situ characterization possibilities enabled by this stage will allow a better understanding of the inherent properties of materials that function at high temperatures, leading to their optimization in relevant application fields such as catalysis, materials, and surface science.\",\"PeriodicalId\":22062,\"journal\":{\"name\":\"Surface and Interface Analysis\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface and Interface Analysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/sia.7278\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface and Interface Analysis","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/sia.7278","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们介绍了高温仪器领域的最新进展,这种加热台可以在高真空、毫巴和大气压力条件(10-7-1000 毫巴)下,在 20-1250°C 的温度范围内进行研究。本文详细介绍了新开发的激光加热解决方案。在本研究中,它的功能以与原位常压 X 射线光电子能谱(APXPS)兼容的加热阶段的形式得到了强调。由于多晶镍箔在催化、电池和电化学方面的应用,它在科学领域备受关注。由于镍的固有亲氧化性,实验以高温氧化(600°C)和还原(1050°C)为目标,这既是一种预处理和制备方法,也是非贵金属材料在反应条件下氧化还原行为的模型反应。通过逐步改变气相成分和温度,实现了从金属到氧化物再到金属的完全可逆的表面状态变化。在还原和氧化条件下,加热阶段在高温下表现出很高的稳定性,证明了这种设计的优势。通过这一阶段的现场表征,可以更好地了解材料在高温下的固有特性,从而在催化、材料和表面科学等相关应用领域对其进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a compact laser-based heating stage for in situ spectroscopic characterizations
In this work, we present a recent advancement in high-temperature instrumentation in the form of a heating stage that enables studies to be performed in the temperature range of 20–1250°C under high-vacuum, millibar, and atmospheric pressure conditions (10−7–1000 mbar). The newly developed laser-based heating solution is described in detail. Its functionality is highlighted in this study in the form of a heating stage compatible with in situ ambient pressure X-ray photoelectron spectroscopy (APXPS). The proof-of-concept experiment presented in this work involves a polycrystalline nickel foil, a material of considerable interest in the scientific field due to its applications in catalysis, batteries, and electrochemistry. Owing to the intrinsic oxophilicity of nickel, the experiment targeted the high-temperature oxidation (600°C) and reduction (1050°C) that serves interest as both, a pretreatment and preparation method, and as a model reaction for the redox behavior of non-noble materials under reactive conditions. Complete and reversible surface state changes from metallic to oxide and back to metallic were achieved through stepwise variations of the gas phase composition and temperature. The heating stage showed high stability at high temperatures under reducing and oxidizing conditions, demonstrating the benefit of this design. The in situ characterization possibilities enabled by this stage will allow a better understanding of the inherent properties of materials that function at high temperatures, leading to their optimization in relevant application fields such as catalysis, materials, and surface science.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface and Interface Analysis
Surface and Interface Analysis 化学-物理化学
CiteScore
3.30
自引率
5.90%
发文量
130
审稿时长
4.4 months
期刊介绍: Surface and Interface Analysis is devoted to the publication of papers dealing with the development and application of techniques for the characterization of surfaces, interfaces and thin films. Papers dealing with standardization and quantification are particularly welcome, and also those which deal with the application of these techniques to industrial problems. Papers dealing with the purely theoretical aspects of the technique will also be considered. Review articles will be published; prior consultation with one of the Editors is advised in these cases. Papers must clearly be of scientific value in the field and will be submitted to two independent referees. Contributions must be in English and must not have been published elsewhere, and authors must agree not to communicate the same material for publication to any other journal. Authors are invited to submit their papers for publication to John Watts (UK only), Jose Sanz (Rest of Europe), John T. Grant (all non-European countries, except Japan) or R. Shimizu (Japan only).
期刊最新文献
Effect of Surface Dissolution on the Floatability of Brucite in Three Anionic Collector Systems Preparation and Properties of Mo/Ti/Sn Conductivity Conversion Coatings on 6063 Aluminum Alloy Nanosilicon Stabilized With Ligands: Effect of High‐Energy Proton Beam on Luminescent Properties Structural Analysis and Electrical Property of Acid‐Treated MWCNT Combined Experimental and Periodic DFT Study of the Size Dependence of Adsorption Properties of Oxide‐Supported Metal Nanoclusters: A Case of NO on Ni/Al2O3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1