Yufei Ma, Huan Zhu, Hongwei Liu, Yali Xie, Dan Zhang, Yan Cheng, Ruyi Feng, Jianping Zhang, Shengke Yang
{"title":"石油降解细菌的降解特性及其对石油碳氢化合物代谢物的研究","authors":"Yufei Ma, Huan Zhu, Hongwei Liu, Yali Xie, Dan Zhang, Yan Cheng, Ruyi Feng, Jianping Zhang, Shengke Yang","doi":"10.1002/clen.202300163","DOIUrl":null,"url":null,"abstract":"<p>Exploring the community characteristics of petroleum degrading bacteria and revealing the types of petroleum metabolites produced by degrading bacteria play an important role in solving the problem of oil pollution. In this study, the bacterial suspension was extracted from the sludge of the sewage treatment plant, and the efficient dominant bacteria were enriched and cultured by microbial screening. The optimal environmental conditions and kinetic behavior of microbial degradation of petroleum hydrocarbons in groundwater were discussed, and the metabolites of microbial degradation of petroleum hydrocarbons were analyzed. The results showed that the optimum degradation conditions of the strain were as follows: bacterial suspension inoculum: 2%, pH: 7, temperature: 30°C, initial concentration of contaminated water sample: 500 mg/L. Under these conditions, the microbial petroleum hydrocarbon degradation efficiency was 84.7% and followed the first-order kinetics; qualitative and quantitative statistical analysis of the metabolites of the microbial degradation of petroleum hydrocarbons by gas chromatography-time-of-flight mass spectrometry was performed. A total of 10 significantly upregulated products and 12 significantly downregulated products were screened, which were significantly different from the metabolites of the control group. Further microbial community analysis showed that <i>Pseudomonas</i> was dominant in the bacterial suspension, more than 99.5%, which was significantly different from the sludge sample, providing data support for the degradation of petroleum hydrocarbons by <i>Pseudomonas</i>. This study has provided a scientific basis for in situ remediation of petroleum pollution in groundwater.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 2","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrading characteristics of oil-degrading bacteria and its study of petroleum hydrocarbon metabolites\",\"authors\":\"Yufei Ma, Huan Zhu, Hongwei Liu, Yali Xie, Dan Zhang, Yan Cheng, Ruyi Feng, Jianping Zhang, Shengke Yang\",\"doi\":\"10.1002/clen.202300163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Exploring the community characteristics of petroleum degrading bacteria and revealing the types of petroleum metabolites produced by degrading bacteria play an important role in solving the problem of oil pollution. In this study, the bacterial suspension was extracted from the sludge of the sewage treatment plant, and the efficient dominant bacteria were enriched and cultured by microbial screening. The optimal environmental conditions and kinetic behavior of microbial degradation of petroleum hydrocarbons in groundwater were discussed, and the metabolites of microbial degradation of petroleum hydrocarbons were analyzed. The results showed that the optimum degradation conditions of the strain were as follows: bacterial suspension inoculum: 2%, pH: 7, temperature: 30°C, initial concentration of contaminated water sample: 500 mg/L. Under these conditions, the microbial petroleum hydrocarbon degradation efficiency was 84.7% and followed the first-order kinetics; qualitative and quantitative statistical analysis of the metabolites of the microbial degradation of petroleum hydrocarbons by gas chromatography-time-of-flight mass spectrometry was performed. A total of 10 significantly upregulated products and 12 significantly downregulated products were screened, which were significantly different from the metabolites of the control group. Further microbial community analysis showed that <i>Pseudomonas</i> was dominant in the bacterial suspension, more than 99.5%, which was significantly different from the sludge sample, providing data support for the degradation of petroleum hydrocarbons by <i>Pseudomonas</i>. This study has provided a scientific basis for in situ remediation of petroleum pollution in groundwater.</p>\",\"PeriodicalId\":10306,\"journal\":{\"name\":\"Clean-soil Air Water\",\"volume\":\"52 2\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clean-soil Air Water\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300163\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean-soil Air Water","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clen.202300163","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Degrading characteristics of oil-degrading bacteria and its study of petroleum hydrocarbon metabolites
Exploring the community characteristics of petroleum degrading bacteria and revealing the types of petroleum metabolites produced by degrading bacteria play an important role in solving the problem of oil pollution. In this study, the bacterial suspension was extracted from the sludge of the sewage treatment plant, and the efficient dominant bacteria were enriched and cultured by microbial screening. The optimal environmental conditions and kinetic behavior of microbial degradation of petroleum hydrocarbons in groundwater were discussed, and the metabolites of microbial degradation of petroleum hydrocarbons were analyzed. The results showed that the optimum degradation conditions of the strain were as follows: bacterial suspension inoculum: 2%, pH: 7, temperature: 30°C, initial concentration of contaminated water sample: 500 mg/L. Under these conditions, the microbial petroleum hydrocarbon degradation efficiency was 84.7% and followed the first-order kinetics; qualitative and quantitative statistical analysis of the metabolites of the microbial degradation of petroleum hydrocarbons by gas chromatography-time-of-flight mass spectrometry was performed. A total of 10 significantly upregulated products and 12 significantly downregulated products were screened, which were significantly different from the metabolites of the control group. Further microbial community analysis showed that Pseudomonas was dominant in the bacterial suspension, more than 99.5%, which was significantly different from the sludge sample, providing data support for the degradation of petroleum hydrocarbons by Pseudomonas. This study has provided a scientific basis for in situ remediation of petroleum pollution in groundwater.
期刊介绍:
CLEAN covers all aspects of Sustainability and Environmental Safety. The journal focuses on organ/human--environment interactions giving interdisciplinary insights on a broad range of topics including air pollution, waste management, the water cycle, and environmental conservation. With a 2019 Journal Impact Factor of 1.603 (Journal Citation Reports (Clarivate Analytics, 2020), the journal publishes an attractive mixture of peer-reviewed scientific reviews, research papers, and short communications.
Papers dealing with environmental sustainability issues from such fields as agriculture, biological sciences, energy, food sciences, geography, geology, meteorology, nutrition, soil and water sciences, etc., are welcome.