α-曼戈斯汀通过增加自噬蛋白的表达,减少高糖对人脐静脉内皮细胞的损伤。

IF 2.1 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Iranian Journal of Basic Medical Sciences Pub Date : 2024-01-01 DOI:10.22038/IJBMS.2023.71019.15425
Farhad Eisvand, Kasra Rezvani, Hossein Hosseinzadeh, Bibi Marjan Razavi
{"title":"α-曼戈斯汀通过增加自噬蛋白的表达,减少高糖对人脐静脉内皮细胞的损伤。","authors":"Farhad Eisvand, Kasra Rezvani, Hossein Hosseinzadeh, Bibi Marjan Razavi","doi":"10.22038/IJBMS.2023.71019.15425","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Diabetes is a chronic disorder that occurs as a result of impaired glucose metabolism. In hyperglycaemic states, the balance between oxidative stress and antioxidant enzymes is disrupted leading to oxidative damage and cell death. In addition, impaired autophagy leads to the storage of dysfunctional proteins and cellular organelles in the cell. Hence, the cytoprotective function of autophagy may be disrupted by high glucose conditions. Alpha-mangostin (A-MG) is an essential xanthone purified from the mangosteen fruit. The different pharmacological benefits of alpha-mangostin, including antioxidant, anti-obesity, and antidiabetic, were demonstrated.</p><p><strong>Materials and methods: </strong>We evaluated the protective influence of A-MG on autophagic response impaired by high concentrations of glucose in human umbilical vein endothelial cells (HUVECs). The HUVECs were treated with various glucose concentrations (5-60 mM) and A-MG (1.25-10 μM) for three days. Then, HUVECs were treated with 60 mM of glucose+2.5 μM of A-MG to measure viability, ROS, and NO content. Finally, the levels of autophagic proteins including LC3, SIRT1, and beclin 1 were evaluated by western blot.</p><p><strong>Results: </strong>The results expressed that high glucose condition (60 mM) decreased viability and increased ROS and NO content in HUVECs. In addition, LC3, SIRT1, and beclin 1 protein levels declined when HUVECs were exposed to the high concentration of glucose. A-MG reversed these detrimental effects and elevated autophagic protein levels.</p><p><strong>Conclusion: </strong>Our data represent that A-MG protects HUVECs against high glucose conditions by decreasing ROS and NO generation as well as increasing the expression of autophagy proteins.</p>","PeriodicalId":14495,"journal":{"name":"Iranian Journal of Basic Medical Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722484/pdf/","citationCount":"0","resultStr":"{\"title\":\"Alpha-mangostin decreases high glucose-induced damage on human umbilical vein endothelial cells by increasing autophagic protein expression.\",\"authors\":\"Farhad Eisvand, Kasra Rezvani, Hossein Hosseinzadeh, Bibi Marjan Razavi\",\"doi\":\"10.22038/IJBMS.2023.71019.15425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>Diabetes is a chronic disorder that occurs as a result of impaired glucose metabolism. In hyperglycaemic states, the balance between oxidative stress and antioxidant enzymes is disrupted leading to oxidative damage and cell death. In addition, impaired autophagy leads to the storage of dysfunctional proteins and cellular organelles in the cell. Hence, the cytoprotective function of autophagy may be disrupted by high glucose conditions. Alpha-mangostin (A-MG) is an essential xanthone purified from the mangosteen fruit. The different pharmacological benefits of alpha-mangostin, including antioxidant, anti-obesity, and antidiabetic, were demonstrated.</p><p><strong>Materials and methods: </strong>We evaluated the protective influence of A-MG on autophagic response impaired by high concentrations of glucose in human umbilical vein endothelial cells (HUVECs). The HUVECs were treated with various glucose concentrations (5-60 mM) and A-MG (1.25-10 μM) for three days. Then, HUVECs were treated with 60 mM of glucose+2.5 μM of A-MG to measure viability, ROS, and NO content. Finally, the levels of autophagic proteins including LC3, SIRT1, and beclin 1 were evaluated by western blot.</p><p><strong>Results: </strong>The results expressed that high glucose condition (60 mM) decreased viability and increased ROS and NO content in HUVECs. In addition, LC3, SIRT1, and beclin 1 protein levels declined when HUVECs were exposed to the high concentration of glucose. A-MG reversed these detrimental effects and elevated autophagic protein levels.</p><p><strong>Conclusion: </strong>Our data represent that A-MG protects HUVECs against high glucose conditions by decreasing ROS and NO generation as well as increasing the expression of autophagy proteins.</p>\",\"PeriodicalId\":14495,\"journal\":{\"name\":\"Iranian Journal of Basic Medical Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10722484/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian Journal of Basic Medical Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.22038/IJBMS.2023.71019.15425\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Basic Medical Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.22038/IJBMS.2023.71019.15425","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

目标:糖尿病是一种因葡萄糖代谢障碍而导致的慢性疾病。在高血糖状态下,氧化应激和抗氧化酶之间的平衡被打破,导致氧化损伤和细胞死亡。此外,自噬功能受损会导致细胞内储存功能失调的蛋白质和细胞器。因此,自噬的细胞保护功能可能会受到高糖条件的破坏。α-山竹素(A-MG)是从山竹果中提纯的一种重要的氧杂蒽酮。研究表明,α-山竹果素具有不同的药理作用,包括抗氧化、抗肥胖和抗糖尿病:我们评估了 A-MG 对高浓度葡萄糖损害人脐静脉内皮细胞(HUVECs)自噬反应的保护作用。用不同浓度的葡萄糖(5-60 mM)和 A-MG(1.25-10 μM)处理 HUVECs 三天。然后,用 60 mM 葡萄糖+2.5 μM A-MG 处理 HUVEC,测量其活力、ROS 和 NO 含量。最后,用 Western 印迹法评估 LC3、SIRT1 和 beclin 1 等自噬蛋白的水平:结果表明:高葡萄糖条件(60 mM)降低了 HUVECs 的活力,增加了 ROS 和 NO 的含量。此外,当 HUVEC 暴露于高浓度葡萄糖时,LC3、SIRT1 和 beclin 1 蛋白水平下降。A-MG 逆转了这些不利影响,并提高了自噬蛋白水平:我们的数据表明,A-MG 可通过减少 ROS 和 NO 的生成以及增加自噬蛋白的表达来保护 HUVECs 免受高浓度葡萄糖的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alpha-mangostin decreases high glucose-induced damage on human umbilical vein endothelial cells by increasing autophagic protein expression.

Objectives: Diabetes is a chronic disorder that occurs as a result of impaired glucose metabolism. In hyperglycaemic states, the balance between oxidative stress and antioxidant enzymes is disrupted leading to oxidative damage and cell death. In addition, impaired autophagy leads to the storage of dysfunctional proteins and cellular organelles in the cell. Hence, the cytoprotective function of autophagy may be disrupted by high glucose conditions. Alpha-mangostin (A-MG) is an essential xanthone purified from the mangosteen fruit. The different pharmacological benefits of alpha-mangostin, including antioxidant, anti-obesity, and antidiabetic, were demonstrated.

Materials and methods: We evaluated the protective influence of A-MG on autophagic response impaired by high concentrations of glucose in human umbilical vein endothelial cells (HUVECs). The HUVECs were treated with various glucose concentrations (5-60 mM) and A-MG (1.25-10 μM) for three days. Then, HUVECs were treated with 60 mM of glucose+2.5 μM of A-MG to measure viability, ROS, and NO content. Finally, the levels of autophagic proteins including LC3, SIRT1, and beclin 1 were evaluated by western blot.

Results: The results expressed that high glucose condition (60 mM) decreased viability and increased ROS and NO content in HUVECs. In addition, LC3, SIRT1, and beclin 1 protein levels declined when HUVECs were exposed to the high concentration of glucose. A-MG reversed these detrimental effects and elevated autophagic protein levels.

Conclusion: Our data represent that A-MG protects HUVECs against high glucose conditions by decreasing ROS and NO generation as well as increasing the expression of autophagy proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iranian Journal of Basic Medical Sciences
Iranian Journal of Basic Medical Sciences MEDICINE, RESEARCH & EXPERIMENTAL-PHARMACOLOGY & PHARMACY
CiteScore
4.00
自引率
4.50%
发文量
142
审稿时长
6-12 weeks
期刊介绍: The Iranian Journal of Basic Medical Sciences (IJBMS) is a peer-reviewed, monthly publication by Mashhad University of Medical Sciences (MUMS), Mashhad, Iran . The Journal of "IJBMS” is a modern forum for scientific communication. Data and information, useful to investigators in any discipline in basic medical sciences mainly including Anatomical Sciences, Biochemistry, Genetics, Immunology, Microbiology, Pathology, Pharmacology, Pharmaceutical Sciences, and Physiology, will be published after they have been peer reviewed. This will also include reviews and multidisciplinary research.
期刊最新文献
Moraea sisyrinchium inhibits proliferation, cell cycle, and migration of cancerous cells, and decreases angiogenesis in chick chorioallantoic membrane. Acupoint catgut embedding attenuates fibromyalgia pain through attenuation of TRPV1 signaling pathway in mouse. Alpha-mangostin decreases high glucose-induced damage on human umbilical vein endothelial cells by increasing autophagic protein expression. Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson's disease. Chronic stress-induced anxiety-like behavior, hippocampal oxidative, and endoplasmic reticulum stress are reversed by young plasma transfusion in aged adult rats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1