Rho GEF Trio 由微管运输,影响迁移神经嵴细胞中微管的稳定性。

IF 3.9 4区 生物学 Q4 Biochemistry, Genetics and Molecular Biology Cells and Development Pub Date : 2023-12-30 DOI:10.1016/j.cdev.2023.203899
Stefanie Gossen, Sarah Gerstner, Annette Borchers
{"title":"Rho GEF Trio 由微管运输,影响迁移神经嵴细胞中微管的稳定性。","authors":"Stefanie Gossen,&nbsp;Sarah Gerstner,&nbsp;Annette Borchers","doi":"10.1016/j.cdev.2023.203899","DOIUrl":null,"url":null,"abstract":"<div><p>Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in <em>Xenopus</em> cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.</p></div>","PeriodicalId":36123,"journal":{"name":"Cells and Development","volume":"177 ","pages":"Article 203899"},"PeriodicalIF":3.9000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266729012300075X/pdfft?md5=73ca2255888e61af8eb1f1b99f397c34&pid=1-s2.0-S266729012300075X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells\",\"authors\":\"Stefanie Gossen,&nbsp;Sarah Gerstner,&nbsp;Annette Borchers\",\"doi\":\"10.1016/j.cdev.2023.203899\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in <em>Xenopus</em> cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.</p></div>\",\"PeriodicalId\":36123,\"journal\":{\"name\":\"Cells and Development\",\"volume\":\"177 \",\"pages\":\"Article 203899\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266729012300075X/pdfft?md5=73ca2255888e61af8eb1f1b99f397c34&pid=1-s2.0-S266729012300075X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cells and Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266729012300075X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells and Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266729012300075X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

定向细胞迁移需要对 Rho GTPase 的活性进行局部微调,以控制突起的形成、细胞-细胞收缩和细胞粘附的周转。Rho 鸟嘌呤核苷酸交换因子(GEF)TRIO 是控制 RhoGTPase 活性的理想选择,因为它结合了两个不同的催化结构域,可在一个分子中控制 Rac1 和 RhoA 的活性。然而,在细胞水平上,这一分子特征还要求对 TRIO 的活性进行严格的时空控制。在这里,我们分析了Trio在异种颅神经嵴(NC)细胞中的动态定位,最近我们已经证明Trio是突起形成和迁移所必需的。利用活细胞成像技术,我们发现 Trio 的 GEF2 结构域(而非 GEF1 结构域)在微管加端与 EB3 动态共定位。Trio的微管介导运输似乎与其在NC迁移中的功能有关,因为与野生型GEF2相比,缺乏负责微管加端定位的SxIP基序的突变型GEF2构建体在挽救Trio功能缺失表型方面的能力明显受损。此外,通过分析迁移的NC细胞中的微管动力学,我们观察到与对照组相比,Trio功能缺失可使细胞-细胞接触点的微管稳定,而NC细胞前缘的微管则不稳定。我们的数据表明,Trio被微管运输到不同的亚细胞位置,在定向NC迁移过程中,它在控制微管稳定性、细胞形态和细胞-细胞相互作用方面具有不同的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The RhoGEF Trio is transported by microtubules and affects microtubule stability in migrating neural crest cells

Directed cell migration requires a local fine-tuning of Rho GTPase activity to control protrusion formation, cell-cell contraction, and turnover of cellular adhesions. The Rho guanine nucleotide exchange factor (GEF) TRIO is ideally suited to control RhoGTPase activity because it combines two distinct catalytic domains to control Rac1 and RhoA activity in one molecule. However, at the cellular level, this molecular feature also requires a tight spatiotemporal control of TRIO activity. Here, we analyze the dynamic localization of Trio in Xenopus cranial neural crest (NC) cells, where we have recently shown that Trio is required for protrusion formation and migration. Using live cell imaging, we find that the GEF2 domain, but not the GEF1 domain of Trio, dynamically colocalizes with EB3 at microtubule plus-ends. Microtubule-mediated transport of Trio appears to be relevant for its function in NC migration, as a mutant GEF2 construct lacking the SxIP motif responsible for microtubule plus-end localization was significantly impaired in its ability to rescue the Trio loss-of-function phenotype compared to wild-type GEF2. Furthermore, by analyzing microtubule dynamics in migrating NC cells, we observed that loss of Trio function stabilized microtubules at cell-cell contact sites compared to controls, whereas they were destabilized at the leading edge of NC cells. Our data suggest that Trio is transported by microtubules to distinct subcellular locations where it has different functions in controlling microtubule stability, cell morphology, and cell-cell interaction during directed NC migration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cells and Development
Cells and Development Biochemistry, Genetics and Molecular Biology-Developmental Biology
CiteScore
2.90
自引率
0.00%
发文量
33
审稿时长
41 days
期刊最新文献
LUC7L2 accelerates the growth of liver cancer cells by enhancing DNA damage repair via RRAS Blastoid: The future of human development in the laboratory Emerging therapeutic strategies for Wnt-dependent colon cancer targeting macropinocytosis The evolutionary and mechanical principles shaping the Drosophila embryonic ventral nerve cord Transcriptional regulation of postnatal aortic development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1