{"title":"基于邻近虚拟轨迹重构的高分辨率声速估计","authors":"Song Xu, Shun Li, Zhihui Zou","doi":"10.1007/s10712-023-09820-w","DOIUrl":null,"url":null,"abstract":"<div><p>The estimation of elastic properties of thin-bed formations from sonic logging is challenging. Standard slowness processing of sonic logging waveforms typically yields an average slowness log profile over the span of the receiver array, obscuring thin-layer features smaller than the array aperture. In order to enhance vertical resolution of the slowness logs, the subarray processing techniques have been developed. However, for the subarrays with smaller aperture, the semblance from subarray waveforms becomes susceptible to noise, which results in a low signal-to-noise (S/N) ratio for the processing slowness logs. To overcome the above drawbacks, we propose a slowness estimation method with the enhanced resolution ranging from the conventional array aperture resolution to the inter-receiver spacing based on the reconstruction of neighboring virtual traces (RNVTs). The method utilizes super-virtual interferometry to reconstruct a large number of waveforms for slowness extraction using redundant information from overlapping receiver subarrays. We validate the feasibility and effectiveness of the proposed method using synthetic numerical experiments. By adding different levels of noise to synthetic data, we conclude that the new method has better noise robustness. Finally, we apply this method to field data, and the estimated high-resolution slowness logs show good agreement in interbedded sand-shale sequences. Both numerical tests and examples of field data show that, the slowness logs estimated by the new method can be obtained with a high resolution as well as with a high S/N ratio, providing an effective method for assessing slowness properties from a borehole.</p></div>","PeriodicalId":49458,"journal":{"name":"Surveys in Geophysics","volume":"45 3","pages":"721 - 743"},"PeriodicalIF":4.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Resolution Sonic Slowness Estimation Based on the Reconstruction of Neighboring Virtual Traces\",\"authors\":\"Song Xu, Shun Li, Zhihui Zou\",\"doi\":\"10.1007/s10712-023-09820-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The estimation of elastic properties of thin-bed formations from sonic logging is challenging. Standard slowness processing of sonic logging waveforms typically yields an average slowness log profile over the span of the receiver array, obscuring thin-layer features smaller than the array aperture. In order to enhance vertical resolution of the slowness logs, the subarray processing techniques have been developed. However, for the subarrays with smaller aperture, the semblance from subarray waveforms becomes susceptible to noise, which results in a low signal-to-noise (S/N) ratio for the processing slowness logs. To overcome the above drawbacks, we propose a slowness estimation method with the enhanced resolution ranging from the conventional array aperture resolution to the inter-receiver spacing based on the reconstruction of neighboring virtual traces (RNVTs). The method utilizes super-virtual interferometry to reconstruct a large number of waveforms for slowness extraction using redundant information from overlapping receiver subarrays. We validate the feasibility and effectiveness of the proposed method using synthetic numerical experiments. By adding different levels of noise to synthetic data, we conclude that the new method has better noise robustness. Finally, we apply this method to field data, and the estimated high-resolution slowness logs show good agreement in interbedded sand-shale sequences. Both numerical tests and examples of field data show that, the slowness logs estimated by the new method can be obtained with a high resolution as well as with a high S/N ratio, providing an effective method for assessing slowness properties from a borehole.</p></div>\",\"PeriodicalId\":49458,\"journal\":{\"name\":\"Surveys in Geophysics\",\"volume\":\"45 3\",\"pages\":\"721 - 743\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surveys in Geophysics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10712-023-09820-w\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surveys in Geophysics","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10712-023-09820-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
High-Resolution Sonic Slowness Estimation Based on the Reconstruction of Neighboring Virtual Traces
The estimation of elastic properties of thin-bed formations from sonic logging is challenging. Standard slowness processing of sonic logging waveforms typically yields an average slowness log profile over the span of the receiver array, obscuring thin-layer features smaller than the array aperture. In order to enhance vertical resolution of the slowness logs, the subarray processing techniques have been developed. However, for the subarrays with smaller aperture, the semblance from subarray waveforms becomes susceptible to noise, which results in a low signal-to-noise (S/N) ratio for the processing slowness logs. To overcome the above drawbacks, we propose a slowness estimation method with the enhanced resolution ranging from the conventional array aperture resolution to the inter-receiver spacing based on the reconstruction of neighboring virtual traces (RNVTs). The method utilizes super-virtual interferometry to reconstruct a large number of waveforms for slowness extraction using redundant information from overlapping receiver subarrays. We validate the feasibility and effectiveness of the proposed method using synthetic numerical experiments. By adding different levels of noise to synthetic data, we conclude that the new method has better noise robustness. Finally, we apply this method to field data, and the estimated high-resolution slowness logs show good agreement in interbedded sand-shale sequences. Both numerical tests and examples of field data show that, the slowness logs estimated by the new method can be obtained with a high resolution as well as with a high S/N ratio, providing an effective method for assessing slowness properties from a borehole.
期刊介绍:
Surveys in Geophysics publishes refereed review articles on the physical, chemical and biological processes occurring within the Earth, on its surface, in its atmosphere and in the near-Earth space environment, including relations with other bodies in the solar system. Observations, their interpretation, theory and modelling are covered in papers dealing with any of the Earth and space sciences.