{"title":"优化教育数据的估算:探索训练分区和缺失数据比率","authors":"Zachary K. Collier, Kamal Chawla, Olushola Soyoye","doi":"10.1080/00220973.2023.2287447","DOIUrl":null,"url":null,"abstract":"The integration of machine learning in educational data analysis presents challenges regarding the availability of sufficient training data, especially in the context of high missing data ratios. T...","PeriodicalId":501538,"journal":{"name":"The Journal of Experimental Education","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Imputation for Educational Data: Exploring Training Partition and Missing Data Ratios\",\"authors\":\"Zachary K. Collier, Kamal Chawla, Olushola Soyoye\",\"doi\":\"10.1080/00220973.2023.2287447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The integration of machine learning in educational data analysis presents challenges regarding the availability of sufficient training data, especially in the context of high missing data ratios. T...\",\"PeriodicalId\":501538,\"journal\":{\"name\":\"The Journal of Experimental Education\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Experimental Education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00220973.2023.2287447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Experimental Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00220973.2023.2287447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Imputation for Educational Data: Exploring Training Partition and Missing Data Ratios
The integration of machine learning in educational data analysis presents challenges regarding the availability of sufficient training data, especially in the context of high missing data ratios. T...