基于多算法融合的电离层模型(MSAP)的风暴时特性

IF 3.7 2区 地球科学 Space Weather Pub Date : 2024-01-02 DOI:10.1029/2022sw003360
Zhou Chen, Kang Wang, Haimeng Li, Wenti Liao, Rongxin Tang, Jing-song Wang, Xiaohua Deng
{"title":"基于多算法融合的电离层模型(MSAP)的风暴时特性","authors":"Zhou Chen, Kang Wang, Haimeng Li, Wenti Liao, Rongxin Tang, Jing-song Wang, Xiaohua Deng","doi":"10.1029/2022sw003360","DOIUrl":null,"url":null,"abstract":"Geomagnetic storms induce ionospheric disturbances, affecting short-wave radio communication systems. Accurate ionospheric total electron content (TEC) prediction is vital for accurately describing the short-wave radio environment of the ionosphere. We use the Multi-Step Auxiliary Prediction (MSAP) model, a deep learning algorithm, to forecast TEC during geomagnetic storms. The MSAP model integrates Bi-LSTM networks, an auxiliary model, and convolutional processes for spatiotemporal modeling. Our validation shows the MSAP model outperforms the IRI-2016 model in predicting global TEC for the next 6 days in the test set. We assess its performance during 116 geomagnetic storm events, considering storm intensity, solar activity, month, and Universal Time (UT). The MSAP model exhibits a weak correlation with storm intensity and a strong correlation with solar activity. Monthly variation displays similar strong correlations in root mean square error (RMSE) and <i>R</i><sup>2</sup> for both models. For UT variation, the other metrics exhibit a weak correlation with the number of Global Navigation Satellite System stations, except for the RMSE of the MSAP and IRI-2016 models.","PeriodicalId":22181,"journal":{"name":"Space Weather","volume":"121 2 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Storm-Time Characteristics of Ionospheric Model (MSAP) Based on Multi-Algorithm Fusion\",\"authors\":\"Zhou Chen, Kang Wang, Haimeng Li, Wenti Liao, Rongxin Tang, Jing-song Wang, Xiaohua Deng\",\"doi\":\"10.1029/2022sw003360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Geomagnetic storms induce ionospheric disturbances, affecting short-wave radio communication systems. Accurate ionospheric total electron content (TEC) prediction is vital for accurately describing the short-wave radio environment of the ionosphere. We use the Multi-Step Auxiliary Prediction (MSAP) model, a deep learning algorithm, to forecast TEC during geomagnetic storms. The MSAP model integrates Bi-LSTM networks, an auxiliary model, and convolutional processes for spatiotemporal modeling. Our validation shows the MSAP model outperforms the IRI-2016 model in predicting global TEC for the next 6 days in the test set. We assess its performance during 116 geomagnetic storm events, considering storm intensity, solar activity, month, and Universal Time (UT). The MSAP model exhibits a weak correlation with storm intensity and a strong correlation with solar activity. Monthly variation displays similar strong correlations in root mean square error (RMSE) and <i>R</i><sup>2</sup> for both models. For UT variation, the other metrics exhibit a weak correlation with the number of Global Navigation Satellite System stations, except for the RMSE of the MSAP and IRI-2016 models.\",\"PeriodicalId\":22181,\"journal\":{\"name\":\"Space Weather\",\"volume\":\"121 2 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Space Weather\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2022sw003360\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Space Weather","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022sw003360","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

地磁暴会引起电离层扰动,影响短波无线电通信系统。准确预测电离层电子总含量(TEC)对于准确描述电离层的短波无线电环境至关重要。我们使用深度学习算法多步辅助预测(MSAP)模型来预测地磁暴期间的 TEC。MSAP 模型集成了 Bi-LSTM 网络、辅助模型和用于时空建模的卷积过程。我们的验证结果表明,MSAP 模型在预测测试集中未来 6 天的全球 TEC 方面优于 IRI-2016 模型。考虑到风暴强度、太阳活动、月份和世界时(UT),我们评估了 MSAP 模型在 116 次地磁风暴事件中的性能。MSAP 模型与风暴强度的相关性较弱,而与太阳活动的相关性较强。两种模式的月变化在均方根误差(RMSE)和 R2 方面都显示出类似的强相关性。对于 UT 变化,除了 MSAP 和 IRI-2016 模式的均方根误差外,其他指标与全球导航卫星系统站点数量的相关性较弱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Storm-Time Characteristics of Ionospheric Model (MSAP) Based on Multi-Algorithm Fusion
Geomagnetic storms induce ionospheric disturbances, affecting short-wave radio communication systems. Accurate ionospheric total electron content (TEC) prediction is vital for accurately describing the short-wave radio environment of the ionosphere. We use the Multi-Step Auxiliary Prediction (MSAP) model, a deep learning algorithm, to forecast TEC during geomagnetic storms. The MSAP model integrates Bi-LSTM networks, an auxiliary model, and convolutional processes for spatiotemporal modeling. Our validation shows the MSAP model outperforms the IRI-2016 model in predicting global TEC for the next 6 days in the test set. We assess its performance during 116 geomagnetic storm events, considering storm intensity, solar activity, month, and Universal Time (UT). The MSAP model exhibits a weak correlation with storm intensity and a strong correlation with solar activity. Monthly variation displays similar strong correlations in root mean square error (RMSE) and R2 for both models. For UT variation, the other metrics exhibit a weak correlation with the number of Global Navigation Satellite System stations, except for the RMSE of the MSAP and IRI-2016 models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
29.70%
发文量
166
期刊最新文献
Quantification of Representation Error in the Neutral Winds and Ion Drifts Using Data Assimilation A Novel Ionospheric Inversion Model: PINN-SAMI3 (Physics Informed Neural Network Based on SAMI3) Nowcasting Solar EUV Irradiance With Photospheric Magnetic Fields and the Mg II Index Calculating the High-Latitude Ionospheric Electrodynamics Using a Machine Learning-Based Field-Aligned Current Model Effects of Forbush Decreases on the Global Electric Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1