Salman Jaff, Mohammed Gubari, Sakineh Shab-Bidar, Kurosh Djafarian
{"title":"补充益生菌对 2 型糖尿病患者脂蛋白相关磷脂酶 A2 的影响:随机双盲临床对照试验","authors":"Salman Jaff, Mohammed Gubari, Sakineh Shab-Bidar, Kurosh Djafarian","doi":"10.1186/s12986-023-00778-5","DOIUrl":null,"url":null,"abstract":"It has been recently reported that lipoprotein-associated phospholipase A2 (Lp-PLA2) may predict the risk of cardiovascular disease. The effect of multi-strain probiotics on Lp-PLA2 in patients with type 2 diabetes is still not clear. This study aimed to determine the effect of multi-strain probiotic supplementation on lipoprotein-associated phospholipase A2, and glycemic status, lipid profile, and body composition in patients with type 2 diabetes. In this randomized double-blind placebo-controlled clinical trial, 68 participants with type 2 diabetes, in the age group of 50–65 years, were recruited and randomly allocated to take either probiotic (n = 34) or placebo (n = 34) for 12 weeks. The primary outcome was lipoprotein-associated phospholipase A2, and secondary outcomes were glycemic parameters, lipid profile, anthropometric characters, and body composition (fat mass and fat-free mass). There was a significant reduction in serum lipoprotein-associated phospholipase A2, in the probiotic group, it dropped by 6.4 units at the end of the study (p < 0.001) compared to the placebo group. Probiotic supplementation also resulted in a significant improvement in the hemoglobin A1c and high-density lipoprotein cholesterol 1.5% (p < 0.001) and 6 mg/dl (p 0.005), respectively. There were no significant changes in other outcomes. Probiotic supplementation was beneficial for reducing Lp-PLA2 and hemoglobin-A1c and improving high-density lipoprotein cholesterol, which may suggest an improvement in the prognosis in patients with type 2 diabetes.","PeriodicalId":19196,"journal":{"name":"Nutrition & Metabolism","volume":"28 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of probiotic supplementation on lipoprotein-associated phospholipase A2 in type 2 diabetic patients: a randomized double blind clinical controlled trial\",\"authors\":\"Salman Jaff, Mohammed Gubari, Sakineh Shab-Bidar, Kurosh Djafarian\",\"doi\":\"10.1186/s12986-023-00778-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been recently reported that lipoprotein-associated phospholipase A2 (Lp-PLA2) may predict the risk of cardiovascular disease. The effect of multi-strain probiotics on Lp-PLA2 in patients with type 2 diabetes is still not clear. This study aimed to determine the effect of multi-strain probiotic supplementation on lipoprotein-associated phospholipase A2, and glycemic status, lipid profile, and body composition in patients with type 2 diabetes. In this randomized double-blind placebo-controlled clinical trial, 68 participants with type 2 diabetes, in the age group of 50–65 years, were recruited and randomly allocated to take either probiotic (n = 34) or placebo (n = 34) for 12 weeks. The primary outcome was lipoprotein-associated phospholipase A2, and secondary outcomes were glycemic parameters, lipid profile, anthropometric characters, and body composition (fat mass and fat-free mass). There was a significant reduction in serum lipoprotein-associated phospholipase A2, in the probiotic group, it dropped by 6.4 units at the end of the study (p < 0.001) compared to the placebo group. Probiotic supplementation also resulted in a significant improvement in the hemoglobin A1c and high-density lipoprotein cholesterol 1.5% (p < 0.001) and 6 mg/dl (p 0.005), respectively. There were no significant changes in other outcomes. Probiotic supplementation was beneficial for reducing Lp-PLA2 and hemoglobin-A1c and improving high-density lipoprotein cholesterol, which may suggest an improvement in the prognosis in patients with type 2 diabetes.\",\"PeriodicalId\":19196,\"journal\":{\"name\":\"Nutrition & Metabolism\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nutrition & Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12986-023-00778-5\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nutrition & Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12986-023-00778-5","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Effect of probiotic supplementation on lipoprotein-associated phospholipase A2 in type 2 diabetic patients: a randomized double blind clinical controlled trial
It has been recently reported that lipoprotein-associated phospholipase A2 (Lp-PLA2) may predict the risk of cardiovascular disease. The effect of multi-strain probiotics on Lp-PLA2 in patients with type 2 diabetes is still not clear. This study aimed to determine the effect of multi-strain probiotic supplementation on lipoprotein-associated phospholipase A2, and glycemic status, lipid profile, and body composition in patients with type 2 diabetes. In this randomized double-blind placebo-controlled clinical trial, 68 participants with type 2 diabetes, in the age group of 50–65 years, were recruited and randomly allocated to take either probiotic (n = 34) or placebo (n = 34) for 12 weeks. The primary outcome was lipoprotein-associated phospholipase A2, and secondary outcomes were glycemic parameters, lipid profile, anthropometric characters, and body composition (fat mass and fat-free mass). There was a significant reduction in serum lipoprotein-associated phospholipase A2, in the probiotic group, it dropped by 6.4 units at the end of the study (p < 0.001) compared to the placebo group. Probiotic supplementation also resulted in a significant improvement in the hemoglobin A1c and high-density lipoprotein cholesterol 1.5% (p < 0.001) and 6 mg/dl (p 0.005), respectively. There were no significant changes in other outcomes. Probiotic supplementation was beneficial for reducing Lp-PLA2 and hemoglobin-A1c and improving high-density lipoprotein cholesterol, which may suggest an improvement in the prognosis in patients with type 2 diabetes.
期刊介绍:
Nutrition & Metabolism publishes studies with a clear focus on nutrition and metabolism with applications ranging from nutrition needs, exercise physiology, clinical and population studies, as well as the underlying mechanisms in these aspects.
The areas of interest for Nutrition & Metabolism encompass studies in molecular nutrition in the context of obesity, diabetes, lipedemias, metabolic syndrome and exercise physiology. Manuscripts related to molecular, cellular and human metabolism, nutrient sensing and nutrient–gene interactions are also in interest, as are submissions that have employed new and innovative strategies like metabolomics/lipidomics or other omic-based biomarkers to predict nutritional status and metabolic diseases.
Key areas we wish to encourage submissions from include:
-how diet and specific nutrients interact with genes, proteins or metabolites to influence metabolic phenotypes and disease outcomes;
-the role of epigenetic factors and the microbiome in the pathogenesis of metabolic diseases and their influence on metabolic responses to diet and food components;
-how diet and other environmental factors affect epigenetics and microbiota; the extent to which genetic and nongenetic factors modify personal metabolic responses to diet and food compositions and the mechanisms involved;
-how specific biologic networks and nutrient sensing mechanisms attribute to metabolic variability.