{"title":"生物合成氧化锌纳米颗粒综述:合成、表征及其应用","authors":"Aklilu Melese, Walelign Wubet, Abdu Hussen, Kenaegzer Mulate, Afework Hailekiros","doi":"10.1515/revic-2023-0022","DOIUrl":null,"url":null,"abstract":"Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.","PeriodicalId":21162,"journal":{"name":"Reviews in Inorganic Chemistry","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications\",\"authors\":\"Aklilu Melese, Walelign Wubet, Abdu Hussen, Kenaegzer Mulate, Afework Hailekiros\",\"doi\":\"10.1515/revic-2023-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.\",\"PeriodicalId\":21162,\"journal\":{\"name\":\"Reviews in Inorganic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revic-2023-0022\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revic-2023-0022","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.
期刊介绍:
Reviews in Inorganic Chemistry (REVIC) is a quarterly, peer-reviewed journal that focuses on developments in inorganic chemistry. Technical reviews offer detailed synthesis protocols, reviews of methodology and descriptions of apparatus. Topics are treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are committed to high quality standards and rapid handling of the review and publication process. The journal publishes all aspects of solid-state, molecular and surface chemistry. Topics may be treated from a synthetic, theoretical, or analytical perspective. The editors and the publisher are commited to high quality standards and rapid handling of the review and publication process.
Topics:
-Main group chemistry-
Transition metal chemistry-
Coordination chemistry-
Organometallic chemistry-
Catalysis-
Bioinorganic chemistry-
Supramolecular chemistry-
Ionic liquids