探索抗体-药物共轭物疗效对有效载荷、抗体和细胞系选择的敏感性

IF 4 2区 化学 Q1 BIOCHEMICAL RESEARCH METHODS Bioconjugate Chemistry Bioconjugate Pub Date : 2024-01-03 DOI:10.1021/acs.bioconjchem.3c00537
Mara Rao, Shruthi Murali, Danielle Amores, Feifan Yu and Andrew Tsourkas*, 
{"title":"探索抗体-药物共轭物疗效对有效载荷、抗体和细胞系选择的敏感性","authors":"Mara Rao,&nbsp;Shruthi Murali,&nbsp;Danielle Amores,&nbsp;Feifan Yu and Andrew Tsourkas*,&nbsp;","doi":"10.1021/acs.bioconjchem.3c00537","DOIUrl":null,"url":null,"abstract":"<p >Antibody–drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody–payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models. To facilitate the identification of optimal ADC compositions, we describe the use of photoreactive antibody-binding domain-drug conjugates (known commercially as oYo-Link) to enable the site-specific labeling of off-the-shelf antibodies. This approach allows for the rapid generation of ADCs with a drug-to-antibody ratio of ∼2 with no subsequent purification required. As a demonstration of this approach, ADCs were generated with different combinations of tubulin-inhibitor drugs (DM1, DM4, VcMMAE, and VcMMAF) and anti-EGFR antibodies (cetuximab, panitumumab, anti-EGFR clone 425, and anti-EGFR clone 528) and were delivered to three EGFR-expressing cell lines (A431, A549, and MDA-MB-231). Real-time cytolysis assays indicated that the most effective antibody varied based on the choice of cell line: cetuximab was most potent against A431 cells, while 425 and 528 led to the greatest cytotoxicity against A549 and MDA-MB-231 cells. These results did not correlate with differences in measured anti-EGFR binding affinity as cetuximab had the highest affinity across all three cell lines, while 425 and 528 had the lowest affinities for all three cell lines. Panitumumab, which had the second-highest anti-EGFR affinity, exhibited the least effective cytolysis across A431, A549, and MDA-MB-231 cells. By demonstrating that ADC potency toward a given target is dependent on both the antibody and drug chosen, these findings can guide the selection of ADCs for further <i>in vivo</i> analysis.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry Bioconjugate","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Sensitivity of Antibody–Drug Conjugate Efficacy to the Selection of Payload, Antibody, and Cell line\",\"authors\":\"Mara Rao,&nbsp;Shruthi Murali,&nbsp;Danielle Amores,&nbsp;Feifan Yu and Andrew Tsourkas*,&nbsp;\",\"doi\":\"10.1021/acs.bioconjchem.3c00537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Antibody–drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody–payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models. To facilitate the identification of optimal ADC compositions, we describe the use of photoreactive antibody-binding domain-drug conjugates (known commercially as oYo-Link) to enable the site-specific labeling of off-the-shelf antibodies. This approach allows for the rapid generation of ADCs with a drug-to-antibody ratio of ∼2 with no subsequent purification required. As a demonstration of this approach, ADCs were generated with different combinations of tubulin-inhibitor drugs (DM1, DM4, VcMMAE, and VcMMAF) and anti-EGFR antibodies (cetuximab, panitumumab, anti-EGFR clone 425, and anti-EGFR clone 528) and were delivered to three EGFR-expressing cell lines (A431, A549, and MDA-MB-231). Real-time cytolysis assays indicated that the most effective antibody varied based on the choice of cell line: cetuximab was most potent against A431 cells, while 425 and 528 led to the greatest cytotoxicity against A549 and MDA-MB-231 cells. These results did not correlate with differences in measured anti-EGFR binding affinity as cetuximab had the highest affinity across all three cell lines, while 425 and 528 had the lowest affinities for all three cell lines. Panitumumab, which had the second-highest anti-EGFR affinity, exhibited the least effective cytolysis across A431, A549, and MDA-MB-231 cells. By demonstrating that ADC potency toward a given target is dependent on both the antibody and drug chosen, these findings can guide the selection of ADCs for further <i>in vivo</i> analysis.</p>\",\"PeriodicalId\":29,\"journal\":{\"name\":\"Bioconjugate Chemistry Bioconjugate\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry Bioconjugate\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00537\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry Bioconjugate","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.bioconjchem.3c00537","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

抗体药物共轭物(ADC)是一类不断发展的靶向治疗药物,在癌症治疗中有着重要的应用。ADC 具有高度模块化的特点,因此可以针对任何癌症类型进行设计,但其疗效受有效载荷、抗体和靶细胞的具体选择影响很大。考虑到可能的抗体-载体组合的数量,在动物模型中评估药代动力学和药效学之前,如果能采用一种有效的方法将 ADC 组合的数量缩小到具有最高和最普遍药效的组合,将有利于 ADC 的开发。为了便于确定最佳 ADC 组合物,我们介绍了光活性抗体结合域-药物共轭物(商业上称为 oYo-Link )的使用方法,以实现对现成抗体的特定位点标记。这种方法可以快速生成药物抗体比为 2 的 ADC,且无需后续纯化。为了演示这种方法,我们用不同的管蛋白抑制剂药物(DM1、DM4、VcMMAE 和 VcMMAF)和抗表皮生长因子受体抗体(西妥昔单抗、帕尼妥单抗、抗表皮生长因子受体克隆 425 和抗表皮生长因子受体克隆 528)组合生成了 ADC,并将其递送到三种表皮生长因子受体表达细胞系(A431、A549 和 MDA-MB-231)。实时细胞溶解试验表明,最有效的抗体因细胞系的选择而异:西妥昔单抗对 A431 细胞的作用最强,而 425 和 528 对 A549 和 MDA-MB-231 细胞的细胞毒性最大。这些结果与测定的抗 EGFR 结合亲和力的差异并不相关,因为西妥昔单抗对所有三种细胞株的亲和力最高,而 425 和 528 对所有三种细胞株的亲和力最低。抗 EGFR 亲和力第二高的帕尼单抗在 A431、A549 和 MDA-MB-231 细胞中的细胞溶解效果最差。这些研究结果表明,ADC对特定靶点的效力取决于所选择的抗体和药物,从而为选择ADC进行进一步体内分析提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Sensitivity of Antibody–Drug Conjugate Efficacy to the Selection of Payload, Antibody, and Cell line

Antibody–drug conjugates (ADCs) make up a growing class of targeted therapeutics with important applications in cancer treatment. ADCs are highly modular in nature and thus can be engineered to target any cancer type, but their efficacy is strongly influenced by the specific choice of payload, antibody, and target cell. Considering the number of possible antibody–payload combinations, ADC development would benefit from an efficient method to narrow the number of ADC compositions to those with the highest and most universal potency prior to assessing pharmacokinetics and pharmacodynamics in animal models. To facilitate the identification of optimal ADC compositions, we describe the use of photoreactive antibody-binding domain-drug conjugates (known commercially as oYo-Link) to enable the site-specific labeling of off-the-shelf antibodies. This approach allows for the rapid generation of ADCs with a drug-to-antibody ratio of ∼2 with no subsequent purification required. As a demonstration of this approach, ADCs were generated with different combinations of tubulin-inhibitor drugs (DM1, DM4, VcMMAE, and VcMMAF) and anti-EGFR antibodies (cetuximab, panitumumab, anti-EGFR clone 425, and anti-EGFR clone 528) and were delivered to three EGFR-expressing cell lines (A431, A549, and MDA-MB-231). Real-time cytolysis assays indicated that the most effective antibody varied based on the choice of cell line: cetuximab was most potent against A431 cells, while 425 and 528 led to the greatest cytotoxicity against A549 and MDA-MB-231 cells. These results did not correlate with differences in measured anti-EGFR binding affinity as cetuximab had the highest affinity across all three cell lines, while 425 and 528 had the lowest affinities for all three cell lines. Panitumumab, which had the second-highest anti-EGFR affinity, exhibited the least effective cytolysis across A431, A549, and MDA-MB-231 cells. By demonstrating that ADC potency toward a given target is dependent on both the antibody and drug chosen, these findings can guide the selection of ADCs for further in vivo analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.00
自引率
2.10%
发文量
236
审稿时长
1.4 months
期刊介绍: Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.
期刊最新文献
Lignin-Based Nanoparticles for Combination of Tumor Oxidative Stress Amplification and Reactive Oxygen Species Responsive Drug Release. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Microwave-Assisted Synthesis of β-N-Aryl Glycoamphiphiles with Diverse Supramolecular Assemblies and Lectin Accessibility. AUNP-12 Near-Infrared Fluorescence Probes across NIR-I to NIR-II Enable In Vivo Detection of PD-1/PD-L1 Axis in the Tumor Microenvironment. Rational Design of Cyanine-Based Fluorogenic Dimers to Reduce Nonspecific Interactions with Albumin and Lipid Bilayers: Application to Highly Sensitive Imaging of GPCRs in Living Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1