H+滑动与转子自由旋转相关,是原发性线粒体疾病中 F1 FO -ATP 酶功能障碍的原因。

IF 10.9 1区 医学 Q1 CHEMISTRY, MEDICINAL Medicinal Research Reviews Pub Date : 2024-01-03 DOI:10.1002/med.22013
Salvatore Nesci, Giovanni Romeo
{"title":"H+滑动与转子自由旋转相关,是原发性线粒体疾病中 F1 FO -ATP 酶功能障碍的原因。","authors":"Salvatore Nesci,&nbsp;Giovanni Romeo","doi":"10.1002/med.22013","DOIUrl":null,"url":null,"abstract":"<p>Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F<sub>1</sub>F<sub>O</sub>-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F<sub>1</sub>F<sub>O</sub>-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The F<sub>O</sub>, which is an integral domain in the membrane, dissipates the chemical potential difference for H<sup>+</sup>, a proton motive force (Δ<i>p</i>), across the inner membrane to generate a torsion. The F<sub>1</sub> domain—the hydrophilic portion responsible for ATP turnover—is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F<sub>1</sub> and F<sub>O</sub> domains support the energy transduction for ATP synthesis. The dissipation of Δ<i>p</i> by means of an H<sup>+</sup> slip correlated to rotor free-wheeling of the F<sub>1</sub>F<sub>O</sub>-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.</p>","PeriodicalId":207,"journal":{"name":"Medicinal Research Reviews","volume":"44 3","pages":"1183-1188"},"PeriodicalIF":10.9000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22013","citationCount":"0","resultStr":"{\"title\":\"H+-slip correlated to rotor free-wheeling as cause of F1FO-ATPase dysfunction in primary mitochondrial disorders\",\"authors\":\"Salvatore Nesci,&nbsp;Giovanni Romeo\",\"doi\":\"10.1002/med.22013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F<sub>1</sub>F<sub>O</sub>-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F<sub>1</sub>F<sub>O</sub>-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The F<sub>O</sub>, which is an integral domain in the membrane, dissipates the chemical potential difference for H<sup>+</sup>, a proton motive force (Δ<i>p</i>), across the inner membrane to generate a torsion. The F<sub>1</sub> domain—the hydrophilic portion responsible for ATP turnover—is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F<sub>1</sub> and F<sub>O</sub> domains support the energy transduction for ATP synthesis. The dissipation of Δ<i>p</i> by means of an H<sup>+</sup> slip correlated to rotor free-wheeling of the F<sub>1</sub>F<sub>O</sub>-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.</p>\",\"PeriodicalId\":207,\"journal\":{\"name\":\"Medicinal Research Reviews\",\"volume\":\"44 3\",\"pages\":\"1183-1188\"},\"PeriodicalIF\":10.9000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/med.22013\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medicinal Research Reviews\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/med.22013\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Research Reviews","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/med.22013","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

先天性代谢异常与氧化磷酸化(OXPHOS)系统功能障碍引起的线粒体疾病有关。婴儿先天性代谢亢进症是一种罕见的疾病,属于卢夫特综合征(Luft syndrome),非甲状腺代谢亢进症,是氧化磷酸化系统缺陷的一个独特例子。线粒体底物氧化与 ADP 磷酸化失去耦合。由于卢夫特综合征是由于细胞呼吸不耦合导致呼吸复合体产生的 ATP 不足而引起的,因此线粒体 F1 FO -ATP 酶催化亚基的新生杂合子变异成为常染色体显性遗传代谢亢进综合征的主要病因,该综合征与 ATP 产生障碍有关,但不涉及呼吸复合体。F1 FO -ATP酶作为一个嵌入式分子机器,利用两个不同的发动机进行旋转。FO 是膜上的一个整体结构域,它将 H+ 的化学势差、质子动力(Δp)耗散到内膜上,从而产生扭转。F1 结构域--负责 ATP 转换的亲水部分--通过分子旋转作用来合成 ATP。F1 和 FO 结构域的结构和功能耦合支持 ATP 合成的能量转换。通过与 F1 FO -ATP 酶转子自由旋转相关的 H+ 滑移,发现Δp 的耗散会导致原发性线粒体疾病中的酶功能障碍。在这篇文章中,我们试图对这些受损线粒体的分子机制进行评论和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
H+-slip correlated to rotor free-wheeling as cause of F1FO-ATPase dysfunction in primary mitochondrial disorders

Inborn errors of metabolism are related to mitochondrial disorders caused by dysfunction of the oxidative phosphorylation (OXPHOS) system. Congenital hypermetabolism in the infant is a rare disease belonging to Luft syndrome, nonthyroidal hypermetabolism, arising from a singular example of a defect in OXPHOS. The mitochondria lose coupling of mitochondrial substrates oxidation from the ADP phosphorylation. Since Luft syndrome is due to uncoupled cell respiration responsible for deficient in ATP production that originates in the respiratory complexes, a de novo heterozygous variant in the catalytic subunit of mitochondrial F1FO-ATPase arises as the main cause of an autosomal dominant syndrome of hypermetabolism associated with dysfunction in ATP production, which does not involve the respiratory complexes. The F1FO-ATPase works as an embedded molecular machine with a rotary action using two different motor engines. The FO, which is an integral domain in the membrane, dissipates the chemical potential difference for H+, a proton motive force (Δp), across the inner membrane to generate a torsion. The F1 domain—the hydrophilic portion responsible for ATP turnover—is powered by the molecular rotary action to synthesize ATP. The structural and functional coupling of F1 and FO domains support the energy transduction for ATP synthesis. The dissipation of Δp by means of an H+ slip correlated to rotor free-wheeling of the F1FO-ATPase has been discovered to cause enzyme dysfunction in primary mitochondrial disorders. In this insight, we try to offer commentary and analysis of the molecular mechanism in these impaired mitochondria.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
29.30
自引率
0.00%
发文量
52
审稿时长
2 months
期刊介绍: Medicinal Research Reviews is dedicated to publishing timely and critical reviews, as well as opinion-based articles, covering a broad spectrum of topics related to medicinal research. These contributions are authored by individuals who have made significant advancements in the field. Encompassing a wide range of subjects, suitable topics include, but are not limited to, the underlying pathophysiology of crucial diseases and disease vectors, therapeutic approaches for diverse medical conditions, properties of molecular targets for therapeutic agents, innovative methodologies facilitating therapy discovery, genomics and proteomics, structure-activity correlations of drug series, development of new imaging and diagnostic tools, drug metabolism, drug delivery, and comprehensive examinations of the chemical, pharmacological, pharmacokinetic, pharmacodynamic, and clinical characteristics of significant drugs.
期刊最新文献
Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Issue Information Front Cover Image, Volume 44, Issue 6 Inside Front Cover Image, Volume 44, Issue 6 An overview of the progress made in research into the Mpox virus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1