Yuanning Zhang, Xueping Gao, Bowen Sun, Xiaobo Liu
{"title":"水动力、成因和缺氧对河流-水库系统底栖氧通量的不同驱动作用","authors":"Yuanning Zhang, Xueping Gao, Bowen Sun, Xiaobo Liu","doi":"10.1029/2023wr035449","DOIUrl":null,"url":null,"abstract":"Benthic oxygen flux with complex spatiotemporal variations is essential for the global budget of carbon dioxide and the regional security of water quality and ecology, but its dominant driver under different circumstances has yet to be identified. In this study, a parametric scheme of oxygen flux was proposed and validated with aquatic eddy correlation measurements and then coupled with a diagenesis model and a water environment model. The coupled model was applied to a river-reservoir with significant environmental gradients in hydrodynamics, diagenesis, and hypoxia, which are three factors that competitively drive the variation in benthic oxygen flux. The results indicate that hydrodynamics dominate the flux in the riverine and thalweg areas, diagenesis is the dominant driver of the lacustrine and bank areas, and hypoxia shows dominance only in the hypolimnetic anoxic area. In general, diagenesis is the dominant driver of oxygen flux in river-reservoirs, followed by hydrodynamics, both of which are more prominent than hypoxia. If the operated reservoir experiences a wet year, the dominance of hydrodynamics tends to increase, while that of diagenesis and hypoxia decreases. The three divers exhibit similar but more stable dominance in riverine systems than in reservoirs, while diagenesis becomes the exclusive driver of oxygen fluxes in lacustrine systems.","PeriodicalId":23799,"journal":{"name":"Water Resources Research","volume":"10 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrodynamics, Diagenesis and Hypoxia Variably Drive Benthic Oxygen Flux in a River-Reservoir System\",\"authors\":\"Yuanning Zhang, Xueping Gao, Bowen Sun, Xiaobo Liu\",\"doi\":\"10.1029/2023wr035449\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Benthic oxygen flux with complex spatiotemporal variations is essential for the global budget of carbon dioxide and the regional security of water quality and ecology, but its dominant driver under different circumstances has yet to be identified. In this study, a parametric scheme of oxygen flux was proposed and validated with aquatic eddy correlation measurements and then coupled with a diagenesis model and a water environment model. The coupled model was applied to a river-reservoir with significant environmental gradients in hydrodynamics, diagenesis, and hypoxia, which are three factors that competitively drive the variation in benthic oxygen flux. The results indicate that hydrodynamics dominate the flux in the riverine and thalweg areas, diagenesis is the dominant driver of the lacustrine and bank areas, and hypoxia shows dominance only in the hypolimnetic anoxic area. In general, diagenesis is the dominant driver of oxygen flux in river-reservoirs, followed by hydrodynamics, both of which are more prominent than hypoxia. If the operated reservoir experiences a wet year, the dominance of hydrodynamics tends to increase, while that of diagenesis and hypoxia decreases. The three divers exhibit similar but more stable dominance in riverine systems than in reservoirs, while diagenesis becomes the exclusive driver of oxygen fluxes in lacustrine systems.\",\"PeriodicalId\":23799,\"journal\":{\"name\":\"Water Resources Research\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1029/2023wr035449\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2023wr035449","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Hydrodynamics, Diagenesis and Hypoxia Variably Drive Benthic Oxygen Flux in a River-Reservoir System
Benthic oxygen flux with complex spatiotemporal variations is essential for the global budget of carbon dioxide and the regional security of water quality and ecology, but its dominant driver under different circumstances has yet to be identified. In this study, a parametric scheme of oxygen flux was proposed and validated with aquatic eddy correlation measurements and then coupled with a diagenesis model and a water environment model. The coupled model was applied to a river-reservoir with significant environmental gradients in hydrodynamics, diagenesis, and hypoxia, which are three factors that competitively drive the variation in benthic oxygen flux. The results indicate that hydrodynamics dominate the flux in the riverine and thalweg areas, diagenesis is the dominant driver of the lacustrine and bank areas, and hypoxia shows dominance only in the hypolimnetic anoxic area. In general, diagenesis is the dominant driver of oxygen flux in river-reservoirs, followed by hydrodynamics, both of which are more prominent than hypoxia. If the operated reservoir experiences a wet year, the dominance of hydrodynamics tends to increase, while that of diagenesis and hypoxia decreases. The three divers exhibit similar but more stable dominance in riverine systems than in reservoirs, while diagenesis becomes the exclusive driver of oxygen fluxes in lacustrine systems.
期刊介绍:
Water Resources Research (WRR) is an interdisciplinary journal that focuses on hydrology and water resources. It publishes original research in the natural and social sciences of water. It emphasizes the role of water in the Earth system, including physical, chemical, biological, and ecological processes in water resources research and management, including social, policy, and public health implications. It encompasses observational, experimental, theoretical, analytical, numerical, and data-driven approaches that advance the science of water and its management. Submissions are evaluated for their novelty, accuracy, significance, and broader implications of the findings.