离散选择模型的重采样估计

IF 2.8 3区 经济学 Q1 ECONOMICS Journal of Choice Modelling Pub Date : 2024-01-03 DOI:10.1016/j.jocm.2023.100467
Nicola Ortelli , Matthieu de Lapparent , Michel Bierlaire
{"title":"离散选择模型的重采样估计","authors":"Nicola Ortelli ,&nbsp;Matthieu de Lapparent ,&nbsp;Michel Bierlaire","doi":"10.1016/j.jocm.2023.100467","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset-reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality-sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode choice dataset: the obtained results show that the samples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.</p></div>","PeriodicalId":46863,"journal":{"name":"Journal of Choice Modelling","volume":"50 ","pages":"Article 100467"},"PeriodicalIF":2.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755534523000684/pdfft?md5=1bf006ed1264b0459140eeab28ae0e10&pid=1-s2.0-S1755534523000684-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Resampling estimation of discrete choice models\",\"authors\":\"Nicola Ortelli ,&nbsp;Matthieu de Lapparent ,&nbsp;Michel Bierlaire\",\"doi\":\"10.1016/j.jocm.2023.100467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset-reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality-sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode choice dataset: the obtained results show that the samples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.</p></div>\",\"PeriodicalId\":46863,\"journal\":{\"name\":\"Journal of Choice Modelling\",\"volume\":\"50 \",\"pages\":\"Article 100467\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755534523000684/pdfft?md5=1bf006ed1264b0459140eeab28ae0e10&pid=1-s2.0-S1755534523000684-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Choice Modelling\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755534523000684\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Choice Modelling","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755534523000684","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

在离散选择建模中,从大型数据集中提取潜在的行为洞察力往往受到最大似然估计可扩展性差的限制。本文提出了一种简单、快速的数据集还原方法,这种方法专门用于保留数据集中原本存在的丰富观测数据,同时降低估计过程的计算复杂度。我们的方法称为 LSH-DR,它利用对位置敏感的哈希算法创建同质聚类,然后从中抽取具有代表性的观测值并进行加权。我们在一个真实世界的模式选择数据集上应用这种方法,证明了它的功效:结果表明,LSH-DR 生成的样本可以大大节省估计时间,同时以极小的代价保持估计效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resampling estimation of discrete choice models

In the context of discrete choice modeling, the extraction of potential behavioral insights from large datasets is often limited by the poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset-reduction method that is specifically designed to preserve the richness of observations originally present in a dataset, while reducing the computational complexity of the estimation process. Our approach, called LSH-DR, leverages locality-sensitive hashing to create homogeneous clusters, from which representative observations are then sampled and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode choice dataset: the obtained results show that the samples generated by LSH-DR allow for substantial savings in estimation time while preserving estimation efficiency at little cost.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
12.50%
发文量
31
期刊最新文献
Editorial Board Latent class choice models with an error structure: Investigating potential unobserved associations between latent segmentation and behavior generation Model choice and framing effects: Do discrete choice modeling decisions affect loss aversion estimates? A consistent moment equations for binary probit models with endogenous variables using instrumental variables Transformation-based flexible error structures for choice modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1