在易得碱介导下氧苯基超级工程塑料的烷氧基化作用

IF 2.3 4区 化学 Q3 POLYMER SCIENCE Polymer Journal Pub Date : 2024-01-04 DOI:10.1038/s41428-023-00870-w
Yasunori Minami, Rena Honobe, Yuuki Inagaki, Kazuhiko Sato, Masaru Yoshida
{"title":"在易得碱介导下氧苯基超级工程塑料的烷氧基化作用","authors":"Yasunori Minami, Rena Honobe, Yuuki Inagaki, Kazuhiko Sato, Masaru Yoshida","doi":"10.1038/s41428-023-00870-w","DOIUrl":null,"url":null,"abstract":"Herein we describe the alcoholysis of super engineering plastics under mild conditions. Treatment of polysulfone (PSU) with methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C resulted in facile depolymerization to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol. The depolymerization of super engineering plastics such as polysulfone (PSU) smoothly proceeded in the presence of methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41428-023-00870-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Alcoholysis of oxyphenylene-based super engineering plastics mediated by readily available bases\",\"authors\":\"Yasunori Minami, Rena Honobe, Yuuki Inagaki, Kazuhiko Sato, Masaru Yoshida\",\"doi\":\"10.1038/s41428-023-00870-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Herein we describe the alcoholysis of super engineering plastics under mild conditions. Treatment of polysulfone (PSU) with methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C resulted in facile depolymerization to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol. The depolymerization of super engineering plastics such as polysulfone (PSU) smoothly proceeded in the presence of methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41428-023-00870-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-023-00870-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-023-00870-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

在此,我们介绍了超级工程塑料在温和条件下的醇解过程。在 1,3-二甲基-2-咪唑烷酮(DMI)中以氢氧化钠为介质,在 80 °C 下用甲醇处理聚砜(PSU),可轻松解聚形成高产率的双(4-甲氧基苯基)砜和 4,4'-(丙烷-2,2-二基)二苯酚(双酚 A)。这些产物很容易通过简单的过滤分离出来。DMI 溶剂可有效促进解聚,并使聚醚醚酮(PEEK)等不溶性树脂发生反应。这种方法也适用于其他醇类,如乙醇和异丙醇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alcoholysis of oxyphenylene-based super engineering plastics mediated by readily available bases
Herein we describe the alcoholysis of super engineering plastics under mild conditions. Treatment of polysulfone (PSU) with methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C resulted in facile depolymerization to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol. The depolymerization of super engineering plastics such as polysulfone (PSU) smoothly proceeded in the presence of methanol mediated by sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) at 80 °C to form bis(4-methoxyphenyl)sulfone and 4,4’-(propane-2,2-diyl)diphenol (bisphenol A) in high yields. These products were readily isolated by simple filtration. The DMI solvent effectively promoted depolymerization and allowed insoluble resins such as polyetheretherketone (PEEK) to undergo the reaction. This method was applicable to other alcohols, such as ethanol and isopropyl alcohol.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymer Journal
Polymer Journal 化学-高分子科学
CiteScore
5.60
自引率
7.10%
发文量
131
审稿时长
2.5 months
期刊介绍: Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews. Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below: Polymer synthesis and reactions Polymer structures Physical properties of polymers Polymer surface and interfaces Functional polymers Supramolecular polymers Self-assembled materials Biopolymers and bio-related polymer materials Polymer engineering.
期刊最新文献
Special issue: Rising Stars in Polymer Science 2024 Effect of heat treatment time on the PTC behavior of wollastonite/CB/CPE composites Acid-activatable photosensitizers for photodynamic therapy using self-aggregates of chlorophyll‒peptide conjugates Viscoelastic behaviors for optimizing self-healing of gels with host–guest inclusion complexes Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1