Meng Zhang, Zhiwen Xie, Jin Liu, Xiao Liu, Xiao Yu, Bo Huang
{"title":"HyperED:基于双曲几何的事件检测分层感知网络","authors":"Meng Zhang, Zhiwen Xie, Jin Liu, Xiao Liu, Xiao Yu, Bo Huang","doi":"10.1111/coin.12627","DOIUrl":null,"url":null,"abstract":"<p>Event detection plays an essential role in the task of event extraction. It aims at identifying event trigger words in a sentence and classifying event types. Generally, multiple event types are usually well-organized with a hierarchical structure in real-world scenarios, and hierarchical correlations between event types can be used to enhance event detection performance. However, such kind of hierarchical information has received insufficient attention which can lead to misclassification between multiple event types. In addition, the most existing methods perform event detection in Euclidean space, which cannot adequately represent hierarchical relationships. To address these issues, we propose a novel event detection network HyperED which embeds the event context and types in Poincaré ball of hyperbolic geometry to help learn hierarchical features between events. Specifically, for the event detection context, we first leverage the pre-trained BERT or BiLSTM in Euclidean space to learn the semantic features of ED sentences. Meanwhile, to make full use of the dependency knowledge, a GNN-based model is applied when encoding event types to learn the correlations between events. Then we use a simple neural-based transformation to project the embeddings into the Poincaré ball to capture hierarchical features, and a distance score in hyperbolic space is computed for prediction. The experiments on MAVEN and ACE 2005 datasets indicate the effectiveness of the HyperED model and prove the natural advantages of hyperbolic spaces in expressing hierarchies in an intuitive way.</p>","PeriodicalId":55228,"journal":{"name":"Computational Intelligence","volume":"40 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HyperED: A hierarchy-aware network based on hyperbolic geometry for event detection\",\"authors\":\"Meng Zhang, Zhiwen Xie, Jin Liu, Xiao Liu, Xiao Yu, Bo Huang\",\"doi\":\"10.1111/coin.12627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Event detection plays an essential role in the task of event extraction. It aims at identifying event trigger words in a sentence and classifying event types. Generally, multiple event types are usually well-organized with a hierarchical structure in real-world scenarios, and hierarchical correlations between event types can be used to enhance event detection performance. However, such kind of hierarchical information has received insufficient attention which can lead to misclassification between multiple event types. In addition, the most existing methods perform event detection in Euclidean space, which cannot adequately represent hierarchical relationships. To address these issues, we propose a novel event detection network HyperED which embeds the event context and types in Poincaré ball of hyperbolic geometry to help learn hierarchical features between events. Specifically, for the event detection context, we first leverage the pre-trained BERT or BiLSTM in Euclidean space to learn the semantic features of ED sentences. Meanwhile, to make full use of the dependency knowledge, a GNN-based model is applied when encoding event types to learn the correlations between events. Then we use a simple neural-based transformation to project the embeddings into the Poincaré ball to capture hierarchical features, and a distance score in hyperbolic space is computed for prediction. The experiments on MAVEN and ACE 2005 datasets indicate the effectiveness of the HyperED model and prove the natural advantages of hyperbolic spaces in expressing hierarchies in an intuitive way.</p>\",\"PeriodicalId\":55228,\"journal\":{\"name\":\"Computational Intelligence\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/coin.12627\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/coin.12627","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
HyperED: A hierarchy-aware network based on hyperbolic geometry for event detection
Event detection plays an essential role in the task of event extraction. It aims at identifying event trigger words in a sentence and classifying event types. Generally, multiple event types are usually well-organized with a hierarchical structure in real-world scenarios, and hierarchical correlations between event types can be used to enhance event detection performance. However, such kind of hierarchical information has received insufficient attention which can lead to misclassification between multiple event types. In addition, the most existing methods perform event detection in Euclidean space, which cannot adequately represent hierarchical relationships. To address these issues, we propose a novel event detection network HyperED which embeds the event context and types in Poincaré ball of hyperbolic geometry to help learn hierarchical features between events. Specifically, for the event detection context, we first leverage the pre-trained BERT or BiLSTM in Euclidean space to learn the semantic features of ED sentences. Meanwhile, to make full use of the dependency knowledge, a GNN-based model is applied when encoding event types to learn the correlations between events. Then we use a simple neural-based transformation to project the embeddings into the Poincaré ball to capture hierarchical features, and a distance score in hyperbolic space is computed for prediction. The experiments on MAVEN and ACE 2005 datasets indicate the effectiveness of the HyperED model and prove the natural advantages of hyperbolic spaces in expressing hierarchies in an intuitive way.
期刊介绍:
This leading international journal promotes and stimulates research in the field of artificial intelligence (AI). Covering a wide range of issues - from the tools and languages of AI to its philosophical implications - Computational Intelligence provides a vigorous forum for the publication of both experimental and theoretical research, as well as surveys and impact studies. The journal is designed to meet the needs of a wide range of AI workers in academic and industrial research.