{"title":"参数积分的随机复杂性和适应的作用 II.索波列夫空间","authors":"Stefan Heinrich","doi":"10.1016/j.jco.2023.101823","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study the complexity of randomized computation of integrals depending on a parameter, with integrands<span> from Sobolev spaces. That is, for </span></span><span><math><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span> we are given <span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and we seek to approximate<span><span><span><math><mo>(</mo><mi>S</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>f</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>t</mi><mspace></mspace><mo>(</mo><mi>s</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> with error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-norm. Information is standard, that is, function values of <em>f</em>. Our results extend previous work of Heinrich and Sindambiwe (1999) <span>[10]</span> for <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span> and Wiegand (2006) <span>[15]</span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>=</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span>. Wiegand's analysis was carried out under the assumption that <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is continuously embedded in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span> (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization technique. In Part I a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting was solved. Here a further aspect of this problem is settled.</span></p></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces\",\"authors\":\"Stefan Heinrich\",\"doi\":\"10.1016/j.jco.2023.101823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>We study the complexity of randomized computation of integrals depending on a parameter, with integrands<span> from Sobolev spaces. That is, for </span></span><span><math><mi>r</mi><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>N</mi></math></span>, <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>≤</mo><mo>∞</mo></math></span>, <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></msup></math></span>, and <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msup><mrow><mo>[</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></mrow><mrow><msub><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></msup></math></span> we are given <span><math><mi>f</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> and we seek to approximate<span><span><span><math><mo>(</mo><mi>S</mi><mi>f</mi><mo>)</mo><mo>(</mo><mi>s</mi><mo>)</mo><mo>=</mo><munder><mo>∫</mo><mrow><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></munder><mi>f</mi><mo>(</mo><mi>s</mi><mo>,</mo><mi>t</mi><mo>)</mo><mi>d</mi><mi>t</mi><mspace></mspace><mo>(</mo><mi>s</mi><mo>∈</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo></math></span></span></span> with error measured in the <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span>-norm. Information is standard, that is, function values of <em>f</em>. Our results extend previous work of Heinrich and Sindambiwe (1999) <span>[10]</span> for <span><math><mi>p</mi><mo>=</mo><mi>q</mi><mo>=</mo><mo>∞</mo></math></span> and Wiegand (2006) <span>[15]</span> for <span><math><mn>1</mn><mo>≤</mo><mi>p</mi><mo>=</mo><mi>q</mi><mo><</mo><mo>∞</mo></math></span>. Wiegand's analysis was carried out under the assumption that <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mi>p</mi></mrow><mrow><mi>r</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is continuously embedded in <span><math><mi>C</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>×</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span><span> (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization technique. In Part I a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting was solved. Here a further aspect of this problem is settled.</span></p></div>\",\"PeriodicalId\":50227,\"journal\":{\"name\":\"Journal of Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Complexity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885064X23000924\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X23000924","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Randomized complexity of parametric integration and the role of adaption II. Sobolev spaces
We study the complexity of randomized computation of integrals depending on a parameter, with integrands from Sobolev spaces. That is, for , , , and we are given and we seek to approximate with error measured in the -norm. Information is standard, that is, function values of f. Our results extend previous work of Heinrich and Sindambiwe (1999) [10] for and Wiegand (2006) [15] for . Wiegand's analysis was carried out under the assumption that is continuously embedded in (embedding condition). We also study the case that the embedding condition does not hold. For this purpose a new ingredient is developed – a stochastic discretization technique. In Part I a basic problem of Information-Based Complexity on the power of adaption for linear problems in the randomized setting was solved. Here a further aspect of this problem is settled.
期刊介绍:
The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited.
Areas Include:
• Approximation theory
• Biomedical computing
• Compressed computing and sensing
• Computational finance
• Computational number theory
• Computational stochastics
• Control theory
• Cryptography
• Design of experiments
• Differential equations
• Discrete problems
• Distributed and parallel computation
• High and infinite-dimensional problems
• Information-based complexity
• Inverse and ill-posed problems
• Machine learning
• Markov chain Monte Carlo
• Monte Carlo and quasi-Monte Carlo
• Multivariate integration and approximation
• Noisy data
• Nonlinear and algebraic equations
• Numerical analysis
• Operator equations
• Optimization
• Quantum computing
• Scientific computation
• Tractability of multivariate problems
• Vision and image understanding.