用修正等值线法测量非导电物种的残余应力

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of the Australian Ceramic Society Pub Date : 2024-01-03 DOI:10.1007/s41779-023-00989-2
Fei Wang
{"title":"用修正等值线法测量非导电物种的残余应力","authors":"Fei Wang","doi":"10.1007/s41779-023-00989-2","DOIUrl":null,"url":null,"abstract":"<div><p>Sintered silicate ceramics have traditionally been difficult to measure for residual stress due to their inhomogeneous microstructure and non-conductive nature, making the state-of-the-art traditional contour method ineffective. To address this issue, a self-invented Double Three-point Bending Moment Delocalization technique was developed to “cut” the ceramics and obtain the necessary sections. By modifying the filtering algorithm for the smoothing program and establishing an automatic reliability parameter for the normalization procedure, the contour method was successfully modified, eliminating errors introduced by manual normalization and the inhomogeneous microstructure. The traditional contour method yielded a residual stress value between − 75 and 117 MPa, whereas the modified contour method resulted in a value of − 12 to 12 MPa. The modified contour method was validated by the mature Hole Drilling Strain-Gage Method, which demonstrated its success in measuring residual stress in non-conductive ceramics. This work highlights the potential of the modified contour method for measuring residual stress in non-conductive ceramics.</p></div>","PeriodicalId":673,"journal":{"name":"Journal of the Australian Ceramic Society","volume":"60 1","pages":"187 - 193"},"PeriodicalIF":1.8000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the residual stress measurement for non-conductive species by modified contour method\",\"authors\":\"Fei Wang\",\"doi\":\"10.1007/s41779-023-00989-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sintered silicate ceramics have traditionally been difficult to measure for residual stress due to their inhomogeneous microstructure and non-conductive nature, making the state-of-the-art traditional contour method ineffective. To address this issue, a self-invented Double Three-point Bending Moment Delocalization technique was developed to “cut” the ceramics and obtain the necessary sections. By modifying the filtering algorithm for the smoothing program and establishing an automatic reliability parameter for the normalization procedure, the contour method was successfully modified, eliminating errors introduced by manual normalization and the inhomogeneous microstructure. The traditional contour method yielded a residual stress value between − 75 and 117 MPa, whereas the modified contour method resulted in a value of − 12 to 12 MPa. The modified contour method was validated by the mature Hole Drilling Strain-Gage Method, which demonstrated its success in measuring residual stress in non-conductive ceramics. This work highlights the potential of the modified contour method for measuring residual stress in non-conductive ceramics.</p></div>\",\"PeriodicalId\":673,\"journal\":{\"name\":\"Journal of the Australian Ceramic Society\",\"volume\":\"60 1\",\"pages\":\"187 - 193\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Australian Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s41779-023-00989-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Australian Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s41779-023-00989-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

烧结硅酸盐陶瓷由于其不均匀的微观结构和不导电的特性,传统上很难测量残余应力,这使得最先进的传统轮廓方法无法奏效。为解决这一问题,我们开发了一种自创的双三点弯矩分散技术来 "切割 "陶瓷并获得必要的截面。通过修改平滑程序的过滤算法和为归一化程序建立自动可靠性参数,成功地修改了等值线方法,消除了手动归一化和不均匀微观结构带来的误差。传统等值线法得出的残余应力值介于 - 75 至 117 兆帕之间,而修改后的等值线法得出的残余应力值为 - 12 至 12 兆帕。成熟的钻孔应变计方法验证了改进的等值线方法,证明其在测量非导电陶瓷的残余应力方面取得了成功。这项工作凸显了改良轮廓法在测量非导电陶瓷残余应力方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the residual stress measurement for non-conductive species by modified contour method

Sintered silicate ceramics have traditionally been difficult to measure for residual stress due to their inhomogeneous microstructure and non-conductive nature, making the state-of-the-art traditional contour method ineffective. To address this issue, a self-invented Double Three-point Bending Moment Delocalization technique was developed to “cut” the ceramics and obtain the necessary sections. By modifying the filtering algorithm for the smoothing program and establishing an automatic reliability parameter for the normalization procedure, the contour method was successfully modified, eliminating errors introduced by manual normalization and the inhomogeneous microstructure. The traditional contour method yielded a residual stress value between − 75 and 117 MPa, whereas the modified contour method resulted in a value of − 12 to 12 MPa. The modified contour method was validated by the mature Hole Drilling Strain-Gage Method, which demonstrated its success in measuring residual stress in non-conductive ceramics. This work highlights the potential of the modified contour method for measuring residual stress in non-conductive ceramics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Australian Ceramic Society
Journal of the Australian Ceramic Society Materials Science-Materials Chemistry
CiteScore
3.70
自引率
5.30%
发文量
123
期刊介绍: Publishes high quality research and technical papers in all areas of ceramic and related materials Spans the broad and growing fields of ceramic technology, material science and bioceramics Chronicles new advances in ceramic materials, manufacturing processes and applications Journal of the Australian Ceramic Society since 1965 Professional language editing service is available through our affiliates Nature Research Editing Service and American Journal Experts at the author''s cost and does not guarantee that the manuscript will be reviewed or accepted
期刊最新文献
Probing higher valences of uranium in nuclear materials using diffuse reflectance spectroscopy Evaluation of the in vitro cytotoxicity and drug delivery of ytterbium (III)-doped versatile bioactive glasses for cancer treatment Rapid tetracycline degradation by S-scheme Se/g-C3N4 heterostructure Modeling of calcium phosphate based on an LCD 3D printer using brushite and calcium hydroxide Assessment of antioxidant activity, thrombogenicity and MTT assay of bioceramic phosphate as a biomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1