Heng Wang, Shaoyan Huang, Jianzhong Zhang, Jie Li, Mingming Liu
{"title":"羟乙基淀粉 130/0.4 负载白蛋白纳米粒子的合成:生物相容性和相互作用机制","authors":"Heng Wang, Shaoyan Huang, Jianzhong Zhang, Jie Li, Mingming Liu","doi":"10.1007/s10847-023-01217-x","DOIUrl":null,"url":null,"abstract":"<div><p>The nanoplatform for drugs demonstrates favorable stability and high therapeutical advantages in the bloodstream. Here, by using hydroxyethyl starch (HES) 130/0.4 and serum albumin, which were widely used as volume expanders in intravenous therapy, we synthesized a new HES 130/0.4-loaded bovine serum albumin (BSA) nanoparticles and investigated the binding mechanism in the simulated physiological environment with considerations of compatibility. Analysis of the fluorescence quenching data of BSA by HES using the Stern–Volmer equation proved the formation of a 1:1 ground state complex. The binding parameters (Δ<i>S</i>° = 329 J mol<sup>−1</sup> K<sup>−1</sup>, Δ<i>H</i>° = 6.38 × 10<sup>5</sup> J mol<sup>−1</sup>, and Δ<i>G</i> = − 3.04 × 10<sup>5</sup> J mol<sup>−1</sup>) at body temperature manifested that the interaction was exothermic and driven by hydrophobic interactions. The binding distance was calculated as 2.73 nm and showed a high possibility of Förster resonance energy transfer. The structural alterations of BSA were assessed both qualitatively and quantitatively through the application of 3D/synchronous fluorescence and circular dichroism techniques, respectively, which showed adaptive changes in secondary structures. The results presented in this study offer not only novel ideas of albumin-based NP synthesis, but precise and comprehensive primary data that elucidate the mechanisms of HES-BSA interaction, helping to comprehend its pharmacodynamics in blood.</p></div>","PeriodicalId":638,"journal":{"name":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The synthesis of hydroxyethyl starch 130/0.4-loaded albumin nanoparticles: biocompatibility and interaction mechanism\",\"authors\":\"Heng Wang, Shaoyan Huang, Jianzhong Zhang, Jie Li, Mingming Liu\",\"doi\":\"10.1007/s10847-023-01217-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The nanoplatform for drugs demonstrates favorable stability and high therapeutical advantages in the bloodstream. Here, by using hydroxyethyl starch (HES) 130/0.4 and serum albumin, which were widely used as volume expanders in intravenous therapy, we synthesized a new HES 130/0.4-loaded bovine serum albumin (BSA) nanoparticles and investigated the binding mechanism in the simulated physiological environment with considerations of compatibility. Analysis of the fluorescence quenching data of BSA by HES using the Stern–Volmer equation proved the formation of a 1:1 ground state complex. The binding parameters (Δ<i>S</i>° = 329 J mol<sup>−1</sup> K<sup>−1</sup>, Δ<i>H</i>° = 6.38 × 10<sup>5</sup> J mol<sup>−1</sup>, and Δ<i>G</i> = − 3.04 × 10<sup>5</sup> J mol<sup>−1</sup>) at body temperature manifested that the interaction was exothermic and driven by hydrophobic interactions. The binding distance was calculated as 2.73 nm and showed a high possibility of Förster resonance energy transfer. The structural alterations of BSA were assessed both qualitatively and quantitatively through the application of 3D/synchronous fluorescence and circular dichroism techniques, respectively, which showed adaptive changes in secondary structures. The results presented in this study offer not only novel ideas of albumin-based NP synthesis, but precise and comprehensive primary data that elucidate the mechanisms of HES-BSA interaction, helping to comprehend its pharmacodynamics in blood.</p></div>\",\"PeriodicalId\":638,\"journal\":{\"name\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inclusion Phenomena and Macrocyclic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10847-023-01217-x\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inclusion Phenomena and Macrocyclic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10847-023-01217-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
The synthesis of hydroxyethyl starch 130/0.4-loaded albumin nanoparticles: biocompatibility and interaction mechanism
The nanoplatform for drugs demonstrates favorable stability and high therapeutical advantages in the bloodstream. Here, by using hydroxyethyl starch (HES) 130/0.4 and serum albumin, which were widely used as volume expanders in intravenous therapy, we synthesized a new HES 130/0.4-loaded bovine serum albumin (BSA) nanoparticles and investigated the binding mechanism in the simulated physiological environment with considerations of compatibility. Analysis of the fluorescence quenching data of BSA by HES using the Stern–Volmer equation proved the formation of a 1:1 ground state complex. The binding parameters (ΔS° = 329 J mol−1 K−1, ΔH° = 6.38 × 105 J mol−1, and ΔG = − 3.04 × 105 J mol−1) at body temperature manifested that the interaction was exothermic and driven by hydrophobic interactions. The binding distance was calculated as 2.73 nm and showed a high possibility of Förster resonance energy transfer. The structural alterations of BSA were assessed both qualitatively and quantitatively through the application of 3D/synchronous fluorescence and circular dichroism techniques, respectively, which showed adaptive changes in secondary structures. The results presented in this study offer not only novel ideas of albumin-based NP synthesis, but precise and comprehensive primary data that elucidate the mechanisms of HES-BSA interaction, helping to comprehend its pharmacodynamics in blood.
期刊介绍:
The Journal of Inclusion Phenomena and Macrocyclic Chemistry is the premier interdisciplinary publication reporting on original research into all aspects of host-guest systems. Examples of specific areas of interest are: the preparation and characterization of new hosts and new host-guest systems, especially those involving macrocyclic ligands; crystallographic, spectroscopic, thermodynamic and theoretical studies; applications in chromatography and inclusion polymerization; enzyme modelling; molecular recognition and catalysis by inclusion compounds; intercalates in biological and non-biological systems, cyclodextrin complexes and their applications in the agriculture, flavoring, food and pharmaceutical industries; synthesis, characterization and applications of zeolites.
The journal publishes primarily reports of original research and preliminary communications, provided the latter represent a significant advance in the understanding of inclusion science. Critical reviews dealing with recent advances in the field are a periodic feature of the journal.