Ellen K G Mhango, Benjamin R Sveinbjornsson, Bergthora S Snorradottir, Sveinbjorn Gizurarson
{"title":"抗疟药物的不兼容性:配制治疗疟疾的复方产品所面临的挑战。","authors":"Ellen K G Mhango, Benjamin R Sveinbjornsson, Bergthora S Snorradottir, Sveinbjorn Gizurarson","doi":"10.1080/10717544.2023.2299594","DOIUrl":null,"url":null,"abstract":"<p><p>Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE<sup>®</sup> 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"31 1","pages":"2299594"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773615/pdf/","citationCount":"0","resultStr":"{\"title\":\"Incompatibility of antimalarial drugs: challenges in formulating combination products for malaria.\",\"authors\":\"Ellen K G Mhango, Benjamin R Sveinbjornsson, Bergthora S Snorradottir, Sveinbjorn Gizurarson\",\"doi\":\"10.1080/10717544.2023.2299594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE<sup>®</sup> 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.</p>\",\"PeriodicalId\":11679,\"journal\":{\"name\":\"Drug Delivery\",\"volume\":\"31 1\",\"pages\":\"2299594\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10773615/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10717544.2023.2299594\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2023.2299594","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Incompatibility of antimalarial drugs: challenges in formulating combination products for malaria.
Lipophilic drugs require more advance formulation, especially if the intention is to make solutions or semisolid formulations. This also accounts for most antimalarial drugs. Although some of these antimalarial drugs are soluble in lipid vehicles, few of them, such as lumefantrine (LF), are also poorly soluble in oily vehicles. Trying to dissolve and formulate LF as a liquid formulation together with other antimalarial drugs is, therefore, a major task. When mixed in solution together with artemether (AR), precipitation occurs, sometimes with LF precipitating out on its own, and sometimes with AR precipitating out alongside LF. In this study, it was hypothesized that the use of fatty acids could lead to enhanced solubility in lipid formulation. Addition of the fatty acid solved the dissolution challenges, making LF soluble for over a year at room temperature (21-23 °C); but further research is needed to test the mechanism of action of the fatty acid. In addition, design of experiments (MODDE® 13) revealed that the amount of fatty acid in the formulation was the only significant factor for LF precipitation.
期刊介绍:
Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.