Yogita Sahu, Rajmani Patel, Ajaya K Singh, S Singh, Vinayak Sahu, Md Abu Bin Hasan Susan
{"title":"用于荧光测定生物样品中葡萄糖的 Dregea Volubilis N 掺杂碳点 ZnO 高荧光复合材料。","authors":"Yogita Sahu, Rajmani Patel, Ajaya K Singh, S Singh, Vinayak Sahu, Md Abu Bin Hasan Susan","doi":"10.1007/s10895-023-03538-z","DOIUrl":null,"url":null,"abstract":"<p><p>A nano-sensor based on N-doped carbon dots (NCDs)@ZnO (NCZ) composite was fabricated and efficacy for detecting glucose from human blood and urine samples in a straightforward manner was examined. The composite was prepared following a green hydrothermal method under ambient condition using a novel plant material, Dregea volubilis fruit and structural and optical properties were evaluated using standard techniques. The composite exhibited excellent characteristics including good photostability, biocompatibility, low toxicity, and strong fluorescence, with a decent quantum yield of up to 59%. The NCZ composite has been very sensitive and could selectively detect glucose in urine and blood samples. Selective glucose quenching was efficacious at different concentrations of glucose (1-6 mM) and in the pH range of 7-8, limit of detection was 0.25 mM. The potential uses of carbon-based materials have grown, thanks to the excellent sensing/detection capabilities of the NCZ composite as well as the capacity to prevent nanoparticle aggregation, opening up new possibilities for the development of environmentally benign nano-sensors.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":"805-818"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Fluorescent ZnO Composite of N-doped Carbon Dots From Dregea Volubilis for Fluorometric Determination of Glucose in Biological Samples.\",\"authors\":\"Yogita Sahu, Rajmani Patel, Ajaya K Singh, S Singh, Vinayak Sahu, Md Abu Bin Hasan Susan\",\"doi\":\"10.1007/s10895-023-03538-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A nano-sensor based on N-doped carbon dots (NCDs)@ZnO (NCZ) composite was fabricated and efficacy for detecting glucose from human blood and urine samples in a straightforward manner was examined. The composite was prepared following a green hydrothermal method under ambient condition using a novel plant material, Dregea volubilis fruit and structural and optical properties were evaluated using standard techniques. The composite exhibited excellent characteristics including good photostability, biocompatibility, low toxicity, and strong fluorescence, with a decent quantum yield of up to 59%. The NCZ composite has been very sensitive and could selectively detect glucose in urine and blood samples. Selective glucose quenching was efficacious at different concentrations of glucose (1-6 mM) and in the pH range of 7-8, limit of detection was 0.25 mM. The potential uses of carbon-based materials have grown, thanks to the excellent sensing/detection capabilities of the NCZ composite as well as the capacity to prevent nanoparticle aggregation, opening up new possibilities for the development of environmentally benign nano-sensors.</p>\",\"PeriodicalId\":15800,\"journal\":{\"name\":\"Journal of Fluorescence\",\"volume\":\" \",\"pages\":\"805-818\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Fluorescence\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s10895-023-03538-z\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-023-03538-z","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Highly Fluorescent ZnO Composite of N-doped Carbon Dots From Dregea Volubilis for Fluorometric Determination of Glucose in Biological Samples.
A nano-sensor based on N-doped carbon dots (NCDs)@ZnO (NCZ) composite was fabricated and efficacy for detecting glucose from human blood and urine samples in a straightforward manner was examined. The composite was prepared following a green hydrothermal method under ambient condition using a novel plant material, Dregea volubilis fruit and structural and optical properties were evaluated using standard techniques. The composite exhibited excellent characteristics including good photostability, biocompatibility, low toxicity, and strong fluorescence, with a decent quantum yield of up to 59%. The NCZ composite has been very sensitive and could selectively detect glucose in urine and blood samples. Selective glucose quenching was efficacious at different concentrations of glucose (1-6 mM) and in the pH range of 7-8, limit of detection was 0.25 mM. The potential uses of carbon-based materials have grown, thanks to the excellent sensing/detection capabilities of the NCZ composite as well as the capacity to prevent nanoparticle aggregation, opening up new possibilities for the development of environmentally benign nano-sensors.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.