妊娠期吸入纳米二氧化钛后,胎儿后代体内的N6-甲基腺苷(M6A)会改变线粒体基因的表达。

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2023-12-01 Epub Date: 2024-01-18 DOI:10.1080/17435390.2023.2293144
Amina Kunovac, Quincy A Hathaway, Dharendra Thapa, Andrya J Durr, Andrew D Taylor, Saira Rizwan, Daud Sharif, Stephen J Valentine, John M Hollander
{"title":"妊娠期吸入纳米二氧化钛后,胎儿后代体内的N6-甲基腺苷(M6A)会改变线粒体基因的表达。","authors":"Amina Kunovac, Quincy A Hathaway, Dharendra Thapa, Andrya J Durr, Andrew D Taylor, Saira Rizwan, Daud Sharif, Stephen J Valentine, John M Hollander","doi":"10.1080/17435390.2023.2293144","DOIUrl":null,"url":null,"abstract":"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO<sub>2</sub>) contributes to cardiac m<sup>6</sup>A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO<sub>2</sub> with a target aerosol mass concentration of 12 mg/m<sup>3</sup>. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m<sup>6</sup>A antibodies was performed followed by sequencing of immunoprecipitant (m<sup>6</sup>A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO<sub>2</sub> exposed mice (<i>Padj</i> ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m<sup>6</sup>A methylation sites (<i>Padj</i> ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (<i>P</i> ≤ 0.05). The lack of m<sup>6</sup>A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO<sub>2</sub> inhalation exposure.</p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"651-668"},"PeriodicalIF":3.6000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988778/pdf/","citationCount":"0","resultStr":"{\"title\":\"N<sup>6</sup>-methyladenosine (M<sup>6</sup>A) in fetal offspring modifies mitochondrial gene expression following gestational nano-TiO<sub>2</sub> inhalation exposure.\",\"authors\":\"Amina Kunovac, Quincy A Hathaway, Dharendra Thapa, Andrya J Durr, Andrew D Taylor, Saira Rizwan, Daud Sharif, Stephen J Valentine, John M Hollander\",\"doi\":\"10.1080/17435390.2023.2293144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO<sub>2</sub>) contributes to cardiac m<sup>6</sup>A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO<sub>2</sub> with a target aerosol mass concentration of 12 mg/m<sup>3</sup>. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m<sup>6</sup>A antibodies was performed followed by sequencing of immunoprecipitant (m<sup>6</sup>A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO<sub>2</sub> exposed mice (<i>Padj</i> ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m<sup>6</sup>A methylation sites (<i>Padj</i> ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (<i>P</i> ≤ 0.05). The lack of m<sup>6</sup>A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO<sub>2</sub> inhalation exposure.</p>\",\"PeriodicalId\":18899,\"journal\":{\"name\":\"Nanotoxicology\",\"volume\":\" \",\"pages\":\"651-668\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10988778/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanotoxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/17435390.2023.2293144\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2023.2293144","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

N6-甲基腺苷(m6A)是真核生物中 RNA 最显著的表转录组修饰,但它在妊娠环境适应性变化中的作用却鲜为人知。我们提出,妊娠期接触纳米二氧化钛(TiO2)会导致胎儿后代心脏m6A甲基化,并影响线粒体基因的表达。10 周大的雌性 FVB/NJ 野生型妊娠小鼠从妊娠第 5 天开始接受了 6 天不连续的全身吸入暴露。小鼠暴露于过滤的室内空气或目标气溶胶质量浓度为 12 mg/m3 的纳米二氧化钛中。在 GD 15 时,小鼠被人道处死,并提取心脏 RNA 和线粒体蛋白。用 m6A 抗体进行免疫沉淀,然后在 Illumina NextSeq 2000 上对免疫沉淀物(m6A)和输入物(mRNA)进行测序。蛋白质提取、制备和 LC-MS/MS 用于线粒体蛋白质定量。暴露组和对照组的母体或胎儿幼崽体重、幼崽数量或幼崽心脏重量均无差异。转录组测序显示,暴露于纳米二氧化钛的小鼠有 3648 个不同表达的 mRNA(Padj ≤ 0.05)。涉及线粒体生物能的转录本显著下调(85 个基因中的 83 个)。921 个转录本显示了明显的 m6A 甲基化位点(Padj ≤ 0.10)。在这 921 个 mRNA 中,有 311 个被确定为同时具有 1) 明显改变的表达和 2) 不同的甲基化位点。线粒体蛋白质组学显示,暴露组 ATP 合成酶亚基的表达量减少(P ≤ 0.05)。线粒体转录本缺乏 m6A 修饰表明,妊娠期吸入纳米二氧化钛会导致转录本稳定性降低和蛋白质表达减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N6-methyladenosine (M6A) in fetal offspring modifies mitochondrial gene expression following gestational nano-TiO2 inhalation exposure.

N6-methyladenosine (m6A) is the most prominent epitranscriptomic modification to RNA in eukaryotes, but it's role in adaptive changes within the gestational environment are poorly understood. We propose that gestational exposure to nano titanium dioxide (TiO2) contributes to cardiac m6A methylation in fetal offspring and influences mitochondrial gene expression. 10-week-old pregnant female FVB/NJ wild-type mice underwent 6 nonconsecutive days of whole-body inhalation exposure beginning on gestational day (GD) 5. Mice were exposed to filtered room air or nano-TiO2 with a target aerosol mass concentration of 12 mg/m3. At GD 15 mice were humanely killed and cardiac RNA and mitochondrial proteins extracted. Immunoprecipitation with m6A antibodies was performed followed by sequencing of immunoprecipitant (m6A) and input (mRNA) on the Illumina NextSeq 2000. Protein extraction, preparation, and LC-MS/MS were used for mitochondrial protein quantification. There were no differences in maternal or fetal pup weights, number of pups, or pup heart weights between exposure and control groups. Transcriptomic sequencing revealed 3648 differentially expressed mRNA in nano-TiO2 exposed mice (Padj ≤ 0.05). Transcripts involved in mitochondrial bioenergetics were significantly downregulated (83 of 85 genes). 921 transcripts revealed significant m6A methylation sites (Padj ≤ 0.10). 311 of the 921 mRNA were identified to have both 1) significantly altered expression and 2) differentially methylated sites. Mitochondrial proteomics revealed decreased expression of ATP Synthase subunits in the exposed group (P ≤ 0.05). The lack of m6A modifications to mitochondrial transcripts suggests a mechanism for decreased transcript stability and reduced protein expression due to gestational nano-TiO2 inhalation exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. In vivo assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Role of physicochemical properties in silica nanoparticle-mediated immunostimulation. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1